## Flight Planning

### January 19, 2010

We begin with some simple definitions from trigonometry. `Rnd`

provides both rounding and a type conversion from inexact (real) arithmetic to exact (integer). `Xmodulo`

is like the `modulo`

function, but simpler. We also use the `square`

function from the Standard Prelude:

`(define pi 3.141592653589793)`

(define (radian->degree r) (/ r pi 2/360))

(define (degree->radian d) (* d 2/360 pi))

(define (rnd x) (round (inexact->exact x)))

(define (xmodulo x y)

(cond

((<= 0 x y) x)

((< x 0) (xmodulo (+ x y) y))

((>= x y) (xmodulo (- x y) y))))

For the first method, `navigate1`

follows the definition exactly through a sequence of temporary variables:

`(define (navigate1 d gt wn ws as)`

(let*

((b (- gt wn -180))

(b-radians (degree->radian b))

(sin-b (sin b-radians))

(a (radian->degree (asin (/ (* sin-b ws) as))))

(th (xmodulo (+ gt a) 360))

(gs (+ (* as (cos (degree->radian (- th gt))))

(* ws (cos b-radians))))

(th (+ gt a))

(ft (/ d gs)))

(list

(rnd gs)

(rnd a)

(xmodulo (rnd th) 360)

(rnd (* 60 ft)))))

For the second method, `det`

uses the cosine rule in the calculation of the ground speed, and `a`

uses the inverse of the cosine rule to calculate the angle of correction between the ground track and the true heading:

`(define (navigate2 d gt wn ws as)`

(let*

((b (xmodulo (- gt wn -180) 360))

(cos-b (cos (degree->radian b)))

(wsqr (square ws))

(asqr (square as))

(det (+ (square (* ws cos-b)) (- wsqr) asqr))

(gs (+ (* ws cos-b) (sqrt det)))

(a (radian->degree (acos (/ (+ asqr (square gs) (- wsqr)) (* 2 gs as)))))

(a ((if (< b 180) + -) a))

(th (+ gt a))

(ft (/ d gs)))

(if (or (< det 0) (< gs 0)) ('error 'navigate "STRANGE" det gs))

(list

(rnd gs)

(rnd a)

(xmodulo (rnd th) 360)

(rnd (* 60 ft)))))

An example is given below:

`> (navigate1 180 90 90 20 90)`

(70 0 90 154)

> (navigate2 180 90 90 20 90)

(70 0 90 154)

You can run the program at http://programmingpraxis.codepad.org/yE35J5Pw.

Pages: 1 2

[...] Praxis – Flight Planning By Remco Niemeijer In today’s Programming Praxis exercise we have to implement two algorithms for flight [...]

My Haskell solution (see http://bonsaicode.wordpress.com/2010/01/19/programming-praxis-flight-planning/ for a version with comments):