## Traveling Salesman: Brute Force

### March 12, 2010

The traveling salesman problem is classic: Find the minimum-length tour that visits each city on a map exactly once, returning to the origin. It is an important problem in practice; consider, for instance, that the cities are soldering points on a large circuit board, each of which must be visited by a soldering robot. It is also an important problem in mathematics, and is known to be in NP, meaning that optimal solutions for non-trivial problems are impossible. Nonetheless, there exist heuristic algorithms that do a good job at minimizing the tour length.

We will examine the traveling salesman problem in an occasional series of exercise, beginning with today’s exercise that looks at the brute-force solution of examining all possible tours. The algorithm is simple: First, select a tour at random, then determine all possible permutations of the tour. Second, determine the length of each tour. Third, report the tour with minimum length as the solution.

Your task is to write a program that solves the traveling salesman problem using the brute-force algorithm. When you are finished, you are welcome to read or run a suggested solution, or to post your own solution or discuss the exercise in the comments below.

Pages: 1 2

[...] Praxis – Traveling Salesman: Brute Force By Remco Niemeijer In today’s Programming Praxis exercise we have to implement a brute-force algorithm for solving the well-known [...]

My Haskell solution (see http://bonsaicode.wordpress.com/2010/03/12/programming-praxis-traveling-salesman-brute-force/ for a version with comments):

A C solution. Quite verbose obviously, and I did manage to fall into a couple of pitfalls along the way. It is fast, though (1 second for the 10-second problem).

[...] with the length of the data. On Programming Praxis they have proposed to resolve the problem using brute force, and using the closest neighbor (a simplification of the [...]

One observation is that most of the permutations of the cities are mere rotations of another permutation. For example, the tour [city2, ... cityN, city1] is a rotation of the tour [city1, city2, ... cityN]. Indeed, any tour starting with any of city2 .. cityN is a rotation of a tour starting with city1.

A smarter brute force solution is to only consider permutations that start with city1. For 10 cities this optimisation eliminates 90% of the calculations.

In python:

On executing this programme on C-free5.0 version, it showed an error for “rand()” at line no.:121

so i overcomed it by including “stdlib.h” header file for this “rand()” function

In the c program there is an error inthe distance function:

in sqrtf()

please help