## Integer Factorization

### April 30, 2010

`; integer factorization`

```(define (expm b e m)   (define (m* x y) (modulo (* x y) m))   (cond ((zero? e) 1)         ((even? e) (expm (m* b b) (/ e 2) m))         (else (m* b (expm (m* b b) (/ (- e 1) 2) m)))))```

```(define (isqrt n)   (let loop ((x n) (y (quotient (+ n 1) 2)))     (if (<= 0 (- y x) 1) x       (loop y (quotient (+ y (quotient n y)) 2)))))```

```(define (ilog b n)   (if (zero? n) -1     (+ (ilog b (quotient n b)) 1)))```

```(define (digits n . args)   (let ((b (if (null? args) 10 (car args))))     (let loop ((n n) (d '()))       (if (zero? n) d           (loop (quotient n b)                 (cons (modulo n b) d))))))```

```(define rand   (let* ((a 3141592653) (c 2718281829)          (m (expt 2 35)) (x 5772156649)          (next (lambda ()                  (let ((x-prime (modulo (+ (* a x) c) m)))                    (set! x x-prime) x-prime)))          (k 103)          (v (list->vector (reverse               (let loop ((i k) (vs (list x)))                 (if (= i 1) vs                   (loop (- i 1) (cons (next) vs)))))))          (y (next))          (init (lambda (s)                  (set! x s) (vector-set! v 0 x)                  (do ((i 1 (+ i 1))) ((= i k))                    (vector-set! v i (next))))))     (lambda seed       (cond ((null? seed)               (let* ((j (quotient (* k y) m))                      (q (vector-ref v j)))                 (set! y q)                 (vector-set! v j (next)) (/ y m)))             ((eq? (car seed) 'get) (list a c m x y k v))             ((eq? (car seed) 'set)               (let ((state (cadr seed)))                 (set! a (list-ref state 0))                 (set! c (list-ref state 1))                 (set! m (list-ref state 2))                 (set! x (list-ref state 3))                 (set! y (list-ref state 4))                 (set! k (list-ref state 5))                 (set! v (list-ref state 6))))             (else (init (modulo (numerator                     (inexact->exact (car seed))) m))                   (rand))))))```

```(define (randint . args)   (cond ((null? (cdr args))           (floor (* (rand) (car args))))         ((< (car args) (cadr args))           (+ (floor (* (rand) (- (cadr args) (car args)))) (car args)))         (else (+ (ceiling (* (rand) (- (cadr args) (car args)))) (car args)))))```

```(define (primes n)   (let* ((max-index (quotient (- n 3) 2))          (v (make-vector (+ 1 max-index) #t)))     (let loop ((i 0) (ps '(2)))       (let ((p (+ i i 3)) (startj (+ (* 2 i i) (* 6 i) 3)))         (cond ((>= (* p p) n)                (let loop ((j i) (ps ps))                   (cond ((> j max-index) (reverse ps))                         ((vector-ref v j)                           (loop (+ j 1) (cons (+ j j 3) ps)))                         (else (loop (+ j 1) ps)))))               ((vector-ref v i)                 (let loop ((j startj))                   (if (<= j max-index)                       (begin (vector-set! v j #f)                              (loop (+ j p)))))                       (loop (+ 1 i) (cons p ps)))               (else (loop (+ 1 i) ps)))))))```

```(define (primes-range l r b)   (let* ((ps (cdr (primes (+ (isqrt r) 1))))          (qs (map (lambda (p) (modulo (* -1/2 (+ l 1 p)) p)) ps))          (zs '()) (z (lambda (p) (set! zs (cons p zs)))))     (do ((t l (+ t b b))          (qs qs (map (lambda (p q) (modulo (- q b) p)) ps qs)))         ((= t r) (reverse zs))       (let ((bs (make-vector b #t)))         (do ((qs qs (cdr qs)) (ps ps (cdr ps))) ((null? qs))           (do ((j (car qs) (+ j (car ps)))) ((<= b j))             (vector-set! bs j #f)))         (do ((j 0 (+ j 1))) ((= j b))           (if (vector-ref bs j) (z (+ t j j 1))))))))```

```(define (save-billion-primes file-name)   (with-output-to-file file-name (lambda ()     (do ((i 0 (+ i 1))) ((= i 10))       (let loop ((ps (if (zero? i) (primes 100000020)                        (primes-range (* i 100000020)                          (* (+ i 1) 100000020) 10000002)))                  (k (quotient (* i 100000020) 30)) (bits 0))         (cond ((null? ps)                 (display (integer->char bits))                 (do ((k (+ k 1) (+ k 1)))                     ((= k (quotient (* (+ i 1) 100000020) 30)))                   (display (integer->char 0))))               ((< k (quotient (car ps) 30))                 (display (integer->char bits))                 (do ((k (+ k 1) (+ k 1)))                     ((= k (quotient (car ps) 30)))                   (display (integer->char 0)))                 (loop ps (quotient (car ps) 30) 0))               (else (case (modulo (car ps) 30)                       ((1)  (loop (cdr ps) k (+ bits 1)))                       ((7)  (loop (cdr ps) k (+ bits 2)))                       ((11) (loop (cdr ps) k (+ bits 4)))                       ((13) (loop (cdr ps) k (+ bits 8)))                       ((17) (loop (cdr ps) k (+ bits 16)))                       ((19) (loop (cdr ps) k (+ bits 32)))                       ((23) (loop (cdr ps) k (+ bits 64)))                       ((29) (loop (cdr ps) k (+ bits 128)))                       (else (loop (cdr ps) k bits))))))))))>```

``` ; (save-billion-primes "prime.bits") ; only do this once (define prime-bits #f) (define (load-primes n file-name)   (with-input-from-file file-name     (lambda ()       (let ((k-max (+ (quotient n 30) (if (zero? (modulo n 30)) 0 1))))         (set! prime-bits (make-vector k-max))         (do ((k 0 (+ k 1))) ((= k k-max))           (vector-set! prime-bits k (char->integer (read-char)))))))) (define max-prime 1000000181) (load-primes 1000000200 "prime.bits") (define (next-prime n)   (define (next-bit n)     (let ((index (quotient n 30))           (offset (modulo n 30)))       (case offset         ((0)                 (values index 1))         ((1 2 3 4 5 6)       (values index 2))         ((7 8 9 10)          (values index 4))         ((11 12)             (values index 8))         ((13 14 15 16)       (values index 16))         ((17 18)             (values index 32))         ((19 20 21 22)       (values index 64))         ((23 24 25 26 27 28) (values index 128))         ((29)                (values (+ index 1) 1)))))   (define (bit-value offset)     (case offset       ((1)   1) ((2)   7) ((4)  11) ((8)   13)       ((16) 17) ((32) 19) ((64) 23) ((128) 29)))   (define (last-pair xs)     (if (null? (cdr xs)) xs       (last-pair (cdr xs))))   (define (cycle . xs)     (set-cdr! (last-pair xs) xs) xs)   (define (get-wheel n)     (let ((base (* (quotient n 30) 30))           (offset (modulo n 30)))       (case offset         ((0)                 (values (+ base  1) (cycle 6 4 2 4 2 4 6 2)))         ((1 2 3 4 5 6)       (values (+ base  7) (cycle 4 2 4 2 4 6 2 6)))         ((7 8 9 10)          (values (+ base 11) (cycle 2 4 2 4 6 2 6 4)))         ((11 12)             (values (+ base 13) (cycle 4 2 4 6 2 6 4 2)))         ((13 14 15 16)       (values (+ base 17) (cycle 2 4 6 2 6 4 2 4)))         ((17 18)             (values (+ base 19) (cycle 4 6 2 6 4 2 4 2)))         ((19 20 21 22)       (values (+ base 23) (cycle 6 2 6 4 2 4 2 4)))         ((23 24 25 26 27 28) (values (+ base 29) (cycle 2 6 4 2 4 2 4 6)))         ((29)                (values (+ base 31) (cycle 6 4 2 4 2 4 6 2))))))   (cond ((< n 2) 2) ((< n 3) 3) ((< n 5) 5)         ((< n max-prime)           (let-values (((index offset) (next-bit n)))             (let loop ((index index) (offset offset))               (cond ((= offset 256) (loop (+ index 1) 1))                     ((zero? (logand (vector-ref prime-bits index) offset))                       (loop index (* offset 2)))                     (else (+ (* index 30) (bit-value offset)))))))         (else (let-values (((k wheel) (get-wheel n)))                 (let loop ((k k) (wheel wheel))                   (if (prime? k) k (loop (+ k (car wheel)) (cdr wheel)))))))) (define (prime? n)   (define (expm b e m)     (define (m* x y) (modulo (* x y) m))     (cond ((zero? e) 1)           ((even? e) (expm (m* b b) (/ e 2) m))           (else (m* b (expm (m* b b) (/ (- e 1) 2) m)))))   (define (digits n . args)     (let ((b (if (null? args) 10 (car args))))       (let loop ((n n) (d '()))         (if (zero? n) d             (loop (quotient n b)                   (cons (modulo n b) d))))))   (define (isqrt n)     (let loop ((x n) (y (quotient (+ n 1) 2)))       (if (<= 0 (- y x) 1) x         (loop y (quotient (+ y (quotient n y)) 2)))))   (define (square? n)     (let ((n2 (isqrt n)))       (= n (* n2 n2))))   (define (jacobi a n)     (if (not (and (integer? a) (integer? n) (positive? n) (odd? n)))         (error 'jacobi "modulus must be positive odd integer")         (let jacobi ((a a) (n n))           (cond ((= a 0) 0)                 ((= a 1) 1)                 ((= a 2) (case (modulo n 8) ((1 7) 1) ((3 5) -1)))                 ((even? a) (* (jacobi 2 n) (jacobi (quotient a 2) n)))                 ((< n a) (jacobi (modulo a n) n))                 ((and (= (modulo a 4) 3) (= (modulo n 4) 3)) (- (jacobi n a)))                 (else (jacobi n a))))))   (define legendre jacobi)   (define (inverse x n)     (let loop ((x (modulo x n)) (a 1))       (cond ((zero? x) (error 'inverse "division by zero"))             ((= x 1) a)             (else (let ((q (- (quotient n x))))                     (loop (+ n (* q x)) (modulo (* q a) n)))))))   (define (miller? n a)     (let loop ((r 0) (s (- n 1)))       (if (even? s) (loop (+ r 1) (/ s 2))         (if (= (expm a s n) 1) #t           (let loop ((r r) (s s))             (cond ((zero? r) #f)                   ((= (expm a s n) (- n 1)) #t)                   (else (loop (- r 1) (* s 2)))))))))   (define (chain m f g x0 x1)     (let loop ((ms (digits m 2)) (u x0) (v x1))       (cond ((null? ms) (values u v))             ((zero? (car ms)) (loop (cdr ms) (f u) (g u v)))             (else (loop (cdr ms) (g u v) (f v))))))   (define (lucas? n)     (let loop ((a 11) (b 7))       (let ((d (- (* a a) (* 4 b))))         (cond ((square? d) (loop (+ a 2) (+ b 1)))               ((not (= (gcd n (* 2 a b d)) 1))                 (loop (+ a 2) (+ b 2)))               (else (let* ((x1 (modulo (- (* a a (inverse b n)) 2) n))                            (m (quotient (- n (legendre d n)) 2))                            (f (lambda (u) (modulo (- (* u u) 2) n)))                            (g (lambda (u v) (modulo (- (* u v) x1) n))))                       (let-values (((xm xm1) (chain m f g 2 x1)))                         (zero? (modulo (- (* x1 xm) (* 2 xm1)) n)))))))))   (cond ((or (not (integer? n)) (< n 2))           (error 'prime? "must be integer greater than one"))         ((even? n) (= n 2)) ((zero? (modulo n 3)) (= n 3))         (else (and (miller? n 2) (miller? n 3) (lucas? n))))) (define (td-factors n b)   (let loop ((n n) (p 2) (fs '()))     (cond ((< n (* p p)) (values (reverse (cons n fs)) 1))           ((< b p) (values (reverse fs) n))           ((zero? (modulo n p))             (let ((new-n (/ n p)))               (if (prime? new-n)                   (values (reverse (cons new-n (cons p fs))) 1)                   (loop (/ n p) p (cons p fs)))))           (else (loop n (next-prime p) fs))))) (define (rho-factor n c b)   (define (f x) (modulo (+ (* x x) c) n))   (let loop ((x 2) (y (f 2)) (q 1) (b b))     (cond ((zero? b) #f)           ((zero? (modulo b 100))             (let ((new-x (f x)) (new-y (f (f y))))               (let ((g (gcd q n))) (if (< 1 g n) g                 (loop new-x new-y (modulo (* (- new-y new-x) q) n) (- b 1))))))           (else (let ((new-x (f x)) (new-y (f (f y))))             (loop new-x new-y (modulo (* (- new-y new-x) q) n) (- b 1))))))) (define (pminus1-factor n b)   (let loop ((c 2) (p 2) (k 0))     (cond ((< b p) (let ((g (gcd (- c 1) n))) (if (< 1 g n) g #f)))           ((zero? (modulo k 100)) (let ((g (gcd (- c 1) n))) (if (< 1 g n) g             (loop (expm c (expt p (ilog p b)) n) (next-prime p) (+ k 1)))))           (else (loop (expm c (expt p (ilog p b)) n) (next-prime p) (+ k 1)))))) (define (add P1 P2 P1-P2 N)   (define (square x) (* x x))   (let* ((x0 (car P1-P2)) (x1 (car P1)) (x2 (car P2))          (z0 (cdr P1-P2)) (z1 (cdr P1)) (z2 (cdr P2))          (t1 (modulo (* (+ x1 z1) (- x2 z2)) n))          (t2 (modulo (* (- x1 z1) (+ x2 z2)) n)))     (cons (modulo (* (square (+ t2 t1)) z0) n)           (modulo (* (square (- t2 t1)) x0) n)))) (define (double P An Ad N)   (define (square x) (* x x))   (let* ((x (car P)) (z (cdr P))          (x+z2 (modulo (square (+ x z)) N))          (x-z2 (modulo (square (- x z)) N))          (t (- x+z2 x-z2)))     (cons (modulo (* x+z2 x-z2 4 Ad) N)           (modulo (* (+ (* t An) (* x-z2 Ad 4)) t) N)))) (define (multiply K P An Ad N)   (cond ((zero? K) (cons 0 0)) ((= K 1) P) ((= K 2) (double P An Ad N))     (else (let loop ((ks (cdr (digits K 2))) (Q (double P An Ad N)) (R P))             (cond ((null? ks) R)                   ((odd? (car ks))                     (loop (cdr ks) (double Q An Ad N) (add Q R P N)))                   (else (loop (cdr ks) (add R Q P N) (double R An Ad N)))))))) (define (curve12 N S)   (let* ((u (modulo (- (* S S) 5) N))          (v (modulo (* 4 S) N)) (v-u (- v u)))     (values (modulo (* (* v-u v-u v-u) (+ u u u v)) N)             (modulo (* 4 u u u v) N)             (cons (modulo (* u u u) N)                   (modulo (* v v v) N))))) (define (ec-factor N B1 B2 S)   (let-values (((An Ad Q) (curve12 N S)))     (let stage1 ((p 2) (Q Q))       (if (< p B1)           (stage1 (next-prime p) (multiply (expt p (ilog p B1)) Q An Ad N))           (let ((g (gcd (cdr Q) n))) (if (< 1 g n) (list 1 g)             (let ((QQ (double Q An Ad N))                   (R (multiply (- B1 1) q An Ad n))                   (T (multiply (+ B1 1) q An Ad n)))               (let stage2 ((p (next-prime B1)) (g g) (k (+ B1 1)) (R R) (T T))                 (cond ((< B2 p) (let ((g (gcd g n))) (if (< 1 g n) (list 2 g) #f)))                       ((= k p) (stage2 (next-prime p) (modulo (* g (cdr T)) N)                                        (+ k 2) t (add T QQ R N)))                       (else (stage2 p g (+ k 2) t (add T QQ R N)))))))))))) (define verbose? #f) (define (msg . xs)   (when verbose?     (for-each display xs)     (newline))) (define (factors n)   ; parameters   (define td-limit 100000)      ; limit of trial division   (define rho-limit 100000)     ; iteration limit per rho trial   (define rho-trials 5)         ; number of rho constants to try   (define pminus1-limit 500000) ; iteration limit   (define ecf-init 1000)        ; first stage limit on first curve   (define ecf-step 1000)        ; increase first stage limit on each curve   (define ecf-limit 100)        ; number of curves to try   (define b2/b1 50)             ; calculate second stage limit   (let ((n n) (facts '()))     (call-with-current-continuation (lambda (exit)       (define (factor? method f)         (if (not f) #f           (let ((f (if (eq? method 'ecf) (cadr f) f))                 (stage (if (eq? method 'ecf) (car f) #f)))             (if (prime? f)                 (begin (set! n (/ n f)) (set! facts (cons f facts))                        (if (eq? method 'ecf)                            (msg "  In stage " stage ", found factor "                                 f ", remaining co-factor " n)                            (msg "  Found factor " f ", remaining co-factor " n))                        (when (prime? n)                          (msg "  Factorization complete")                          (exit (sort < (cons n facts))))                        #t)                 (begin (if (eq? method 'ecf)                            (msg "  In stage " stage ", found non-prime factor " f)                            (msg "  Found non-prime factor " f))                        (let ((fs (factors f)))                          (if (or (not fs) (pair? (car fs)))                              (exit (cons (sort < facts) (* n f)))                              (begin (set! n (/ n f))                                     (set! facts (append fs facts))                                     (when (prime? n)                                       (msg "  Factorization complete")                                       (exit (sort < (cons n facts))))                                     #t))))))))       ; check for primality       (when (prime? n) (msg "Input number is prime") (exit (list n)))       ; trial division       (msg "Trial division: bound=" td-limit)       (let-values (((fs cofact) (td-factors n td-limit)))         (when (pair? fs) (msg "  Found factors " fs)           (when (< 1 cofact) (msg " &nbspRemaining co-factor " cofact)))         (when (= cofact 1) (msg "  Factorization complete") (exit fs))         (set! facts (append fs facts)) (set! n cofact))       ; pollard rho       (let loop ((k rho-trials) (c (randint n)))         (when (positive? k)           (msg "Pollard rho: bound=" rho-limit ", constant=" c)           (if (factor? 'rho (rho-factor n c rho-limit))               (loop k (randint n))               (loop (- k 1) (randint n)))))       ; pollard pminus1       (let loop ()         (msg "Pollard p-1: bound=" pminus1-limit)         (when (factor? 'pm1 (pminus1-factor n pminus1-limit)) (loop)))       ; elliptic curve       (let loop ((c 0) (s (randint 6 n)) (b1 ecf-init))         (when (< c ecf-limit)           (msg "Elliptic curve " c ": b1=" b1 ", b2=" (* b1 b2/b1) ", s=" s)           (if (factor? 'ecf (ec-factor n b1 (* b1 b2/b1) s))               (loop 0 (randint 6 n) ecf-init)               (loop (+ c 1) (randint 6 n) (+ b1 ecf-step)))))       ; failure -- return factors, remaining co-factor       (cons (sort < facts) n))))) (function(g){g.__ATA.initAd({sectionId:26942, width:300, height:250});})(window); Like this:Like Loading... Related Pages: 1 2 3 ```
``` Posted by programmingpraxis Filed in Exercises Leave a Comment » ```
``` Leave a Reply Enter your comment here... Fill in your details below or click an icon to log in: Email (required) (Address never made public) Name (required) Website You are commenting using your WordPress.com account. ( Log Out / Change ) You are commenting using your Twitter account. ( Log Out / Change ) You are commenting using your Facebook account. ( Log Out / Change ) You are commenting using your Google+ account. ( Log Out / Change ) Cancel Connecting to %s var highlander_expando_javascript = function(){ var input = document.createElement( 'input' ), comment = jQuery( '#comment' ); if ( 'placeholder' in input ) { comment.attr( 'placeholder', jQuery( '.comment-textarea label' ).remove().text() ); } // Expando Mode: start small, then auto-resize on first click + text length jQuery( '#comment-form-identity' ).hide(); jQuery( '#comment-form-subscribe' ).hide(); jQuery( '#commentform .form-submit' ).hide(); comment.css( { 'height':'10px' } ).one( 'focus', function() { var timer = setInterval( HighlanderComments.resizeCallback, 10 ) jQuery( this ).animate( { 'height': HighlanderComments.initialHeight } ).delay( 100 ).queue( function(n) { clearInterval( timer ); HighlanderComments.resizeCallback(); n(); } ); jQuery( '#comment-form-identity' ).slideDown(); jQuery( '#comment-form-subscribe' ).slideDown(); jQuery( '#commentform .form-submit' ).slideDown(); }); } jQuery(document).ready( highlander_expando_javascript ); Notify me of new comments via email. Notify me of new posts via email. ```
``` Categories Administrivia Exercises Archives November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 May 2015 April 2015 March 2015 February 2015 January 2015 December 2014 November 2014 October 2014 September 2014 August 2014 July 2014 June 2014 May 2014 April 2014 March 2014 February 2014 January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 September 2012 August 2012 July 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011 January 2011 December 2010 November 2010 October 2010 September 2010 August 2010 July 2010 June 2010 May 2010 April 2010 March 2010 February 2010 January 2010 December 2009 November 2009 October 2009 September 2009 August 2009 July 2009 June 2009 May 2009 April 2009 March 2009 February 2009 April 2010 S M T W T F S « Mar   May »  123 45678910 11121314151617 18192021222324 252627282930   Archives November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 May 2015 April 2015 March 2015 February 2015 January 2015 December 2014 November 2014 October 2014 September 2014 August 2014 July 2014 June 2014 May 2014 April 2014 March 2014 February 2014 January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 September 2012 August 2012 July 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011 January 2011 December 2010 November 2010 October 2010 September 2010 August 2010 July 2010 June 2010 May 2010 April 2010 March 2010 February 2010 January 2010 December 2009 November 2009 October 2009 September 2009 August 2009 July 2009 June 2009 May 2009 April 2009 March 2009 February 2009 Blogroll WordPress.com WordPress.org ```
``` The Ambiru Theme. Blog at WordPress.com. /* <![CDATA[ */ var HighlanderComments = {"loggingInText":"Logging In\u2026","submittingText":"Posting Comment\u2026","postCommentText":"Post Comment","connectingToText":"Connecting to %s","commentingAsText":"%1\$s: You are commenting using your %2\$s account.","logoutText":"Log Out","loginText":"Log In","connectURL":"https:\/\/programmingpraxis.wordpress.com\/public.api\/connect\/?action=request","logoutURL":"https:\/\/programmingpraxis.wordpress.com\/wp-login.php?action=logout&_wpnonce=646f7499bb","homeURL":"http:\/\/programmingpraxis.com\/","postID":"2249","gravDefault":"blank","enterACommentError":"Please enter a comment","enterEmailError":"Please enter your email address here","invalidEmailError":"Invalid email address","enterAuthorError":"Please enter your name here","gravatarFromEmail":"This picture will show whenever you leave a comment. Click to customize it.","logInToExternalAccount":"Log in to use details from one of these accounts.","change":"Change","changeAccount":"Change Account","comment_registration":"","userIsLoggedIn":"","isJetpack":"0","text_direction":"ltr"}; /* ]]> */ Follow Follow “Programming Praxis” Get every new post delivered to your Inbox. Join 701 other followers Build a website with WordPress.com %d bloggers like this: //<![CDATA[ var jetpackLikesWidgetQueue = []; var jetpackLikesWidgetBatch = []; var jetpackLikesMasterReady = false; function JetpackLikespostMessage( message, target ) { if ( "string" === typeof message ){ try{ message = JSON.parse( message ); } catch(e) { return; } } pm( { target: target, type: 'likesMessage', data: message, origin: '*' } ); } function JetpackLikesBatchHandler() { var requests = []; jQuery( 'div.jetpack-likes-widget-unloaded' ).each( function( i ) { if ( jetpackLikesWidgetBatch.indexOf( this.id ) > -1 ) return; jetpackLikesWidgetBatch.push( this.id ); var regex = /like-(post|comment)-wrapper-(\d+)-(\d+)-(\w+)/; var match = regex.exec( this.id ); if ( ! match || match.length != 5 ) return; var info = { blog_id: match[2], width: this.width }; if ( 'post' == match[1] ) { info.post_id = match[3]; } else if ( 'comment' == match[1] ) { info.comment_id = match[3]; } info.obj_id = match[4]; requests.push( info ); }); if ( requests.length > 0 ) { JetpackLikespostMessage( { event: 'initialBatch', requests: requests }, window.frames['likes-master'] ); } } function JetpackLikesMessageListener( event ) { if ( "undefined" == typeof event.event ) return; if ( 'masterReady' == event.event ) { jQuery( document ).ready( function() { jetpackLikesMasterReady = true; var stylesData = { event: 'injectStyles' }; if ( jQuery( 'iframe.admin-bar-likes-widget' ).length > 0 ) { JetpackLikespostMessage( { event: 'adminBarEnabled' }, window.frames[ 'likes-master' ] ); stylesData.adminBarStyles = { background: jQuery( '#wpadminbar .quicklinks li#wp-admin-bar-wpl-like > a' ).css( 'background' ), isRtl: ( 'rtl' == jQuery( '#wpadminbar' ).css( 'direction' ) ) }; } if ( !window.addEventListener ) jQuery( '#wp-admin-bar-admin-bar-likes-widget' ).hide(); stylesData.textStyles = { color: jQuery( '.sd-text-color').css( 'color' ), fontFamily: jQuery( '.sd-text-color' ).css( 'font-family' ), fontSize: jQuery( '.sd-text-color' ).css( 'font-size' ), direction: jQuery( '.sd-text-color' ).css( 'direction' ), fontWeight: jQuery( '.sd-text-color' ).css( 'font-weight' ), fontStyle: jQuery( '.sd-text-color' ).css( 'font-style' ), textDecoration: jQuery( '.sd-text-color' ).css('text-decoration') }; stylesData.linkStyles = { color: jQuery( '.sd-link-color' ).css('color'), fontFamily: jQuery( '.sd-link-color' ).css('font-family'), fontSize: jQuery( '.sd-link-color' ).css('font-size'), textDecoration: jQuery( '.sd-link-color' ).css('text-decoration'), fontWeight: jQuery( '.sd-link-color' ).css( 'font-weight' ), fontStyle: jQuery( '.sd-link-color' ).css( 'font-style' ) }; JetpackLikespostMessage( stylesData, window.frames[ 'likes-master' ] ); JetpackLikesBatchHandler(); jQuery( document ).on( 'inview', 'div.jetpack-likes-widget-unloaded', function() { jetpackLikesWidgetQueue.push( this.id ); }); }); } if ( 'showLikeWidget' == event.event ) { jQuery( '#' + event.id + ' .post-likes-widget-placeholder' ).fadeOut( 'fast', function() { jQuery( '#' + event.id + ' .post-likes-widget' ).fadeIn( 'fast', function() { JetpackLikespostMessage( { event: 'likeWidgetDisplayed', blog_id: event.blog_id, post_id: event.post_id, obj_id: event.obj_id }, window.frames['likes-master'] ); }); }); } if ( 'clickReblogFlair' == event.event ) { wpcom_reblog.toggle_reblog_box_flair( event.obj_id ); } if ( 'showOtherGravatars' == event.event ) { var \$container = jQuery( '#likes-other-gravatars' ); var \$list = \$container.find( 'ul' ); \$container.hide(); \$list.html( '' ); \$container.find( '.likes-text span' ).text( event.total ); jQuery.each( event.likers, function( i, liker ) { \$list.append( '<li class="' + liker.css_class + '"><a href="' + liker.profile_URL + '" class="wpl-liker" rel="nofollow" target="_parent"><img src="' + liker.avatar_URL + '" alt="' + liker.name + '" width="30" height="30" style="padding-right: 3px;" /></a></li>'); } ); var offset = jQuery( "[name='" + event.parent + "']" ).offset(); \$container.css( 'left', offset.left + event.position.left - 10 + 'px' ); \$container.css( 'top', offset.top + event.position.top - 33 + 'px' ); var rowLength = Math.floor( event.width / 37 ); var height = ( Math.ceil( event.likers.length / rowLength ) * 37 ) + 13; if ( height > 204 ) { height = 204; } \$container.css( 'height', height + 'px' ); \$container.css( 'width', rowLength * 37 - 7 + 'px' ); \$list.css( 'width', rowLength * 37 + 'px' ); \$container.fadeIn( 'slow' ); var scrollbarWidth = \$list[0].offsetWidth - \$list[0].clientWidth; if ( scrollbarWidth > 0 ) { \$container.width( \$container.width() + scrollbarWidth ); \$list.width( \$list.width() + scrollbarWidth ); } } } pm.bind( 'likesMessage', function(e) { JetpackLikesMessageListener(e); } ); jQuery( document ).click( function( e ) { var \$container = jQuery( '#likes-other-gravatars' ); if ( \$container.has( e.target ).length === 0 ) { \$container.fadeOut( 'slow' ); } }); function JetpackLikesWidgetQueueHandler() { var wrapperID; if ( ! jetpackLikesMasterReady ) { setTimeout( JetpackLikesWidgetQueueHandler, 500 ); return; } if ( jetpackLikesWidgetQueue.length > 0 ) { // We may have a widget that needs creating now var found = false; while( jetpackLikesWidgetQueue.length > 0 ) { // Grab the first member of the queue that isn't already loading. wrapperID = jetpackLikesWidgetQueue.splice( 0, 1 )[0]; if ( jQuery( '#' + wrapperID ).hasClass( 'jetpack-likes-widget-unloaded' ) ) { found = true; break; } } if ( ! found ) { setTimeout( JetpackLikesWidgetQueueHandler, 500 ); return; } } else if ( jQuery( 'div.jetpack-likes-widget-unloaded' ).length > 0 ) { // Grab any unloaded widgets for a batch request JetpackLikesBatchHandler(); // Get the next unloaded widget wrapperID = jQuery( 'div.jetpack-likes-widget-unloaded' ).first()[0].id; if ( ! wrapperID ) { // Everything is currently loaded setTimeout( JetpackLikesWidgetQueueHandler, 500 ); return; } } if ( 'undefined' === typeof wrapperID ) { setTimeout( JetpackLikesWidgetQueueHandler, 500 ); return; } var \$wrapper = jQuery( '#' + wrapperID ); \$wrapper.find( 'iframe' ).remove(); if ( \$wrapper.hasClass( 'slim-likes-widget' ) ) { \$wrapper.find( '.post-likes-widget-placeholder' ).after( "<iframe class='post-likes-widget jetpack-likes-widget' name='" + \$wrapper.data( 'name' ) + "' height='22px' width='68px' frameBorder='0' scrolling='no' src='" + \$wrapper.data( 'src' ) + "'></iframe>" ); } else { \$wrapper.find( '.post-likes-widget-placeholder' ).after( "<iframe class='post-likes-widget jetpack-likes-widget' name='" + \$wrapper.data( 'name' ) + "' height='55px' width='100%' frameBorder='0' src='" + \$wrapper.data( 'src' ) + "'></iframe>" ); } \$wrapper.removeClass( 'jetpack-likes-widget-unloaded' ).addClass( 'jetpack-likes-widget-loading' ); \$wrapper.find( 'iframe' ).load( function( e ) { var \$iframe = jQuery( e.target ); \$wrapper.removeClass( 'jetpack-likes-widget-loading' ).addClass( 'jetpack-likes-widget-loaded' ); JetpackLikespostMessage( { event: 'loadLikeWidget', name: \$iframe.attr( 'name' ), width: \$iframe.width() }, window.frames[ 'likes-master' ] ); if ( \$wrapper.hasClass( 'slim-likes-widget' ) ) { \$wrapper.find( 'iframe' ).Jetpack( 'resizeable' ); } }); setTimeout( JetpackLikesWidgetQueueHandler, 250 ); } JetpackLikesWidgetQueueHandler(); //]]> // <![CDATA[ (function() { try{ if ( window.external &&'msIsSiteMode' in window.external) { if (window.external.msIsSiteMode()) { var jl = document.createElement('script'); jl.type='text/javascript'; jl.async=true; jl.src='/wp-content/plugins/ie-sitemode/custom-jumplist.php'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(jl, s); } } }catch(e){} })(); // ]]> var skimlinks_pub_id = "725X584219" var skimlinks_sitename = "programmingpraxis.wordpress.com"; _tkq = window._tkq || []; _stq = window._stq || []; _tkq.push(['storeContext', {'blog_id':'6649073','blog_tz':'0','user_lang':'en','blog_lang':'en','user_id':'0'}]); _stq.push(['view', {'blog':'6649073','v':'wpcom','tz':'0','user_id':'0','post':'2249','subd':'programmingpraxis'}]); _stq.push(['extra', {'crypt':'UE5XaGUuOTlwaD85flAmcm1mcmZsaDhkV11YdWtpP0NsWnVkPS9sL0ViLndld3AlSGN8YmRCSmtFZUxRR1lZc2ZadVg3cTBuL0VLL1ZwbmhsV0hlUFdwMm1rVGptMmJ8Wj1yP2hVWGdYfDVDRDJDW1ZjVlR+aXlOdkYuU19qZlVNTWxvUFBJTzdQcFsuRElyTj9rREdhJVZ4NzVYXW0tdlZIR05TY1lMNEY3L1ZNR0lyfHpReCZZW2k0MVprWVtufHRPdTQxVFRdMS18Z3NuZ1AxbUJBcHFEVVYrYz1sU2swSk5iVGQ/YUw9N1o1WzY3LTB4P3hdb2hUeW5YSFEtK0dCa0JleVVaODZmS3BfVEVtamo5N3lCRz9laVpvW3xzbS56'}]); _stq.push([ 'clickTrackerInit', '6649073', '2249' ]); if ( 'object' === typeof wpcom_mobile_user_agent_info ) { wpcom_mobile_user_agent_info.init(); var mobileStatsQueryString = ""; if( false !== wpcom_mobile_user_agent_info.matchedPlatformName ) mobileStatsQueryString += "&x_" + 'mobile_platforms' + '=' + wpcom_mobile_user_agent_info.matchedPlatformName; if( false !== wpcom_mobile_user_agent_info.matchedUserAgentName ) mobileStatsQueryString += "&x_" + 'mobile_devices' + '=' + wpcom_mobile_user_agent_info.matchedUserAgentName; if( wpcom_mobile_user_agent_info.isIPad() ) mobileStatsQueryString += "&x_" + 'ipad_views' + '=' + 'views'; if( "" != mobileStatsQueryString ) { new Image().src = document.location.protocol + '//pixel.wp.com/g.gif?v=wpcom-no-pv' + mobileStatsQueryString + '&baba=' + Math.random(); } } ```