Logarithm Tables

September 30, 2011

The requirement to always display mantissas accurate to within 1 in 10000 makes this exercise harder than it looks. The two tricks are rounding instead of truncating, and calculating the mean (average) differences instead of some lower-bound difference for the extra digit. Here’s the log table:

(define (log-average-interp i k)
  (define (add-on j)
    (- (* (log10 (/ (+ i (* j 10) k) 1000.0)) 10000)
       (* (log10 (/ (+ i (* j 10)) 1000.0)) 10000)))
  (inexact->exact (round (average (map add-on (range 10))))))

(define (log-display-interp i)
  (display " ")
  (do ((k 1 (+ k 1))) ((= 10 k))
    (display " ")
    (display (pr2 (log-average-interp i k)))))

(define (log-display-line i)
    (do ((j 0 (+ j 10))) ((= 100 j))
      (display " ")
      (display (pr4 (log10 (/ (+ i j) 1000)))))
    (log-display-interp i))

(define (log-display-table)
  (display-header)
  (do ((i 1000 (+ i 100))) ((= 10000 i))
    (if (zero? (modulo i 1000)) (display-bar))
    (display (/ i 100))
    (display " ")
    (log-display-line i)
    (newline)))

The mean difference is calculated in the log-average-interp function, where each fourth digit is calculated as the average amount of interpolation required over all ten possible third digits. Anti-logarithms are calculated similarly, but backwards:

(define (alog-average-interp i k)
  (define (add-on j)
    (- (* (expt 10 (+ 1 (/ (+ i (* j 10) k) 10000))) 100)
       (* (expt 10 (+ 1 (/ (+ i (* j 10)) 10000))) 100)))
  (inexact->exact (round (average (map add-on (range 10))))))

(define (alog-display-interp i)
  (display " ")
  (do ((k 1 (+ k 1))) ((= 10 k))
    (display " ")
    (display (pr2 (alog-average-interp i k)))))

(define (alog-display-line i)
  (do ((j 0 (+ j 10))) ((= 100 j))
    (display " ")
    (display (pr4 (/ (expt 10 (+ 1 (/ (+ i j) 10000))) 100))))
  (alog-display-interp i))

(define (alog-display-table)
  (display-header)
  (do ((i 1000 (+ i 100))) ((= 10000 i))
    (if (zero? (modulo i 1000)) (display-bar))
    (display (/ i 100))
    (display " ")
    (alog-display-line i)
    (newline))))

We also need some auxiliary functions to handle the formatted printing, in addition to range, average and log10 from the Standard Prelude:

(define (pr4 x)
  (let* ((x (inexact->exact (round (* x 10000))))
         (s (number->string x)))
    (if (< x 1000) (set! s (string-append "0" s)))
    (if (< x 100) (set! s (string-append "0" s)))
    (if (string x)))
    (if (< x 10) (set! s (string-append " " s)))
    s))

(define (display-header)
  (display " ")
  (do ((j 0 (+ j 1))) ((= j 10))
    (display " ")
    (display j))
  (display " ")
  (do ((j 1 (+ j 1))) ((= j 10))
    (display " ")
    (display j))
  (newline))

(define (display-bar)
  (display "-- ";)
  (do ((j 0 (+ j 1))) ((= j 10))
    (display " ") (display "----"))
  (display " ")
  (do ((j 1 (+ j 1))) ((= j 10))
    (display " ") (display "--"))
  (newline))

You can run the program at http://programmingpraxis.codepad.org/fiKOD0wV. The output is shown on the previous page.

About these ads

Pages: 1 2 3

4 Responses to “Logarithm Tables”

  1. Dennis Decker Jensen said

    I remember using tables 20 years ago and even 10 years ago. Using tables at the exam instead of or in addition to a calculator is still allowed in Denmark as far as I know, and it actually provides a benefit, because you can double check your results. I remember my previous mathematics teacher even taught us pupils to use a ruler and caliper, because it gave us a much better understanding of what logarithms were about.

  2. Mike said

    I learned to use logarithms in school a long time ago (30 years or so). In my office, I have the 1957-58 edition of the CRC, which contains tables of logarithms to 4 digits, to 5 digits, logarithms of trig functions, etc. I haven’t used logarithm tables directly since school. However, I have several slide rules (which are based on logarithms) and use them on a regular basis.

    Here is my python 3 code to produce the log and alog tables.

    from math import log10
    
    def printtable(title, func):
        fmthdr = ("{:2}" + " {:>4}"*10 + " " + " {:2}"*9).format
        fmtrow = ("{:2}" + " {:04}"*10 + " " + " {:2}"*9).format
    
        print("\n\n{:^80}".format(title))
        print(fmthdr('',0,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9))
        print(fmthdr(*(['--'] + ['----']*10 + ['--']*9)))
        
        for d12 in range(1000, 10000, 100):
            label = d12//100
            sums = [0]*10
            logs = []
            for d3 in range(0, 100, 10):
                x = d12 + d3
                logx = func(x)
                logs.append(round(logx))
                
                for d4 in range(1, 10):
                    y = d12 + d3 + d4
                    logy = func(y)
                    sums[d4] += logy - logx
                    
            sums = [round(s/10) for s in sums]
            
            print(fmtrow(label, *(logs + sums[1:])))
            if d12%500 == 400:
                print()
    
    printtable("Logarithms", lambda x: log10(x/1000) * 10000)
    
    printtable("Antilogarithms", lambda x: pow(10, x/10000) * 1000)
    
    
    
  3. programmingpraxis said

    Mike: I still use my father’s slide rule. And I recently bought a 1.5″ diameter circular slide rule that hangs on my keychain — it’s already proven useful.

  4. Mike said

    The bezel on my watch is a cicular slide rule, the pencil holder on my desk is a cylindrical one, and I have an E6B flight computer. I also have several of my fathers slide rules that date from the 50′s. My favorite is a credit card sized circular slide rule with a periodic table on the back and a pull out card with all sorts of mathmatical and physical constants, conversion formulas, etc.

    When I served on a submarine we used ‘whiz wheels’ all the time. A skilled person with a whiz wheel could often do a computation faster then a person using a computer. We also practiced calculating targeting solutions in our heads.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 576 other followers

%d bloggers like this: