
Programming with Prime Numbers

Contents

1 The Sieve of Eratosthenes 2

2 Trial Division 3

3 Pseudoprimality Checking 5

4 Pollard’s Rho Method 6

5 Going Further 8

Appendices 8
C . 8
Haskell . 12
Java . 14
Python . 17
Scheme . 18

Prime numbers are those integers greater than one that
are divisible only by themselves and one; an integer greater
than one that is not prime is composite. Prime numbers
have fascinated mathematicians since the days of the an-
cient Greek mathematicians, and remain an object of study
today. The sequence of prime numbers begins 2, 3, 5, 7,
11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, . . . and continues to infinity, which Eu-
clid, the famous teacher of geometry, famously proved about
twenty-three centuries ago in what must certainly be the
most beautiful proof in all of mathematics:

Assume for the moment that the number
of primes is finite, and make a list of them:

Copyright c© 2012 by Programming Praxis of Saint Louis, Missouri, USA. All rights
reserved. This document is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License; to view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter re-
questing a copy of the license to Creative Commons, 171 Second Street, Suite 300,
San Francisco, California, 94105, USA. The code described in this document may be
used under the GNU General Public License 3; to view a copy of this license, visit
http://www.gnu.org/licenses/gpl-3.0.txt or send a letter requesting a copy of the license
to Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, Massachusetts,
02110, USA. The code presented in this document has been included for its instructional
value. It has been tested with care but is not guaranteed for any particular purpose.
The author does not offer any warranties or representations, nor does he accept any
liabilities with respect to the code. “Programming Praxis” and the “sharpen your saw”
logo are trademarks of Programming Praxis of Saint Louis, Missouri, USA. You can find
this essay on the internet at http://programmingpraxis.files.wordpress.com/2012/09/-
primenumbers.pdf, or contact the author at programmingpraxis@gmail.com. Published
on September 23, 2012.

p1, p2, . . . , pk. Now compute the number n = p1 ·
p2 · . . . · pk + 1. Certainly n is not evenly divis-
ible by any of the primes p1, p2, . . . , pk, because
division by any them leaves a remainder of 1. Thus
either n is prime, or n is composite but has two
or more prime factors not on the list p1, p2, . . . , pk

of prime numbers. In either case the assumption
that the number of primes is finite is contradicted,
thus proving the infinitude of primes. —Euclid, El-
ements, Book IX, Proposition 20, circa 300 B.C.

In this essay we will examine three problems related to
prime numbers: enumerating the prime numbers, determin-
ing if a given number is prime or composite, and factoring a
composite number into its prime factors. We describe in de-
tail five relevant functions: one that makes a list of the prime
numbers less than a given number using the Sieve of Eratos-
thenes; two that determine whether a given number is prime
or composite, one using trial division and the other using an
algorithm developed by Gary Miller and Michael Rabin; and
two that find the unique factorization of a given composite
number, one using trial division and the other using John
Pollard’s rho algorithm. We first describe the algorithms in
the body of the essay, then describe actual implementations
in five languages—C, Haskell, Java, Python and Scheme—in
a series of appendices.

Although we are primarily interested in programming, we
are also careful to honor the underlying mathematics. We
have already given Euclid’s proof of the infinitude of primes,
and we will see his proof of the Fundamental Theorem of
Arithmetic. We will also discuss Fermat’s Little Theorem,
the Prime Number Theorem, the Chinese Remainder Theo-
rem, and the Birthday Paradox. And in addition to Euclid
we will meet such great mathematicians as Eratosthenes, Sun
Zi, Aryabhata, Fermat, Leibniz, Euler, and Gauss, as well as
some contemporary mathematicians.

Our goals are modest. Our purpose is pedagogical, so
we are primarily interested in the clarity of the code. We
describe algorithms that are well known and implement them
carefully. And we hope that careful reading will lead you to
be a better programmer in addition to learning something
about prime numbers. Even so, our functions are genuinely
useful for a variety of purposes beyond simple study, and are
actually suitable for real work in the study of primes.

2 Programming with

1 The Sieve of Eratosthenes

The method that is in common use today to make a list of the
prime numbers less than a given input n was invented about
two hundred years before Christ by Eratosthenes of Cyrene,
who was an astronomer, geographer and mathematician, as
well as the third chief librarian of Ptolemy’s Great Library
at Alexandria; he calculated the distance from Earth to Sun,
the tilt of the Earth’s axis, and the circumference of the
Earth, and invented the leap day and a system of latitude
and longitude. His method begins by making a list of all the
numbers from 2 to the desired maximum prime number n.
Then the method enters an iterative phase. At each step, the
smallest uncrossed number that hasn’t yet been considered is
identified, and all multiples of that number are crossed out;
this is repeated until no uncrossed numbers remain uncon-
sidered. All the remaining uncrossed numbers are prime.

Thus, the first step crosses out all multiples of 2: 4, 6, 8,10
and so on. At the second step, the smallest uncrossed number
is 3, and multiples of 3 are crossed out: 6, 9, 12, 15 and so
on; note that some numbers, such as 6, might be crossed
out multiple times. At this point 4 has been crossed out, so
the next smallest uncrossed number is 5, and its multiples
10, 15, 20, 25 and so on are also crossed out. The process
continues until all uncrossed numbers have been considered.
Thus, each prime is used to “sift” its multiples out of the
original list, so that only primes are left in the sieve. Here is
a formal statement of the algorithm:

Algorithm 1.A: Ancient Sieve of Eratosthenes: Generate
the primes not exceeding n > 1:

1. [Initialization] Create a bitarray B2...n with each item set
to TRUE. Set p← 2.

2. [Terminate?] If p > n, stop.

3. [Found prime?] If Bp = FALSE, go to Step 5. Otherwise,
output the prime p and set i← p+ p.

4. [Sift on p] Set Bi ← FALSE. Set i ← i + p. If i ≤ n,
go to Step 4.

5. [Iterate] Set p← p+ 1 and go to Step 2.

Or instead of a formal algorithm you may prefer the ditty
from the 1960 book Drunkard’s Walk by Frederik Pohl:

Strike the Twos and strike the Threes,
The Sieve of Eratosthenes!
When the multiples sublime,
The numbers that are left, are prime.

Although this is the basic algorithm, there are three op-
timizations that are routinely applied. First, since 2 is the
only even prime, it is best to handle 2 separately and sieve
only on odd numbers, reducing the size of the sieve by half.
Second, instead of starting the crossing-out at the smallest
multiple of the current sieving prime, it is possible to start at
the square of the multiple, since all smaller numbers will have

already been crossed out; we saw that in the sample when
6 was already crossed out as a multiple of 2 when we were
crossing out multiples of 3. Third, as a consequence of the
second optimization, sieving can stop as soon as the square
of the sieving prime is greater than n, since there is nothing
else to do. Here is a formal statement of the algorithm for
the optimized Sieve of Eratosthenes:

Algorithm 1.B: Optimized Sieve of Eratosthenes: Gener-
ate the primes not exceeding n > 1:

1. [Initialization] Set m ← b(n − 1)/2c. Create a bitarray
B0...m−1 with each item set to TRUE. Set i ← 0. Set
p← 3. Output the prime 2.

2. [Sieving complete?] If n < p2, go to Step 5.

3. [Found prime?] If Bi = FALSE, set i ← i + 1, set
p← p+ 2, and go to Step 2. Otherwise, output the prime
p and set j ← 2i2 + 6i+ 3 (or j ← (p2 − 3)/2).

4. [Sift on p] If j < m, set Bj ← FALSE, set j ← j+ 2i+ 3
(or j ← j+p) and go to Step 4. Otherwise, set i← i+ 1,
set p← p+ 2, and go to Step 2.

5. [Terminate?] If i = m, stop.

6. [Report remaining primes.] If Bi = TRUE, output the
prime p. Then, regardless of the value of Bi, set i← i+1,
set p← p+ 2, and go to Step 5.

The calculation of j in Step 3 is interesting. Since the
bitarray contains odd numbers starting from 3, an index i
of the bitarray corresponds to the number p = 2i + 3; for
instance, the fifth item in the bitarray, at index 4, is 11.
Sifting starts from the square of the current prime, so to sift
the prime 11 at index 4 we start from 112 = 121 at index
59, calculated as (121− 3)/2. Thus, to compute the starting
index j, we calculate ((2i + 3)2 − 3)/2, which with a little
bit of algebra simplifies to the formula in Step 3. You may
prefer the alternate calculation (p2−3)/2 which exploits the
identity 2i+ 3 = p.

As an example, we show the calculation of the primes less
than a hundred. The first step notes that 3 is the smallest
uncrossed number, and crosses out starting from 32: 9, 15,
21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99.

3 5 7 /9 11 13////15 17 19 ///21 23 25 ///27 29 31 ///33 35
37////39 41 43 ///45 47 49 ///51 53 55 ///57 59 61////63 65 67 ///69
71 73 ///75 77 79 ////81 83 85 ///87 89 91 ///93 95 97 ////99

Now 5 is the next smallest uncrossed number, so we cross
out starting from 52: 25, 35, 45, 55, 65, 75, 85, 95. Note that
45 and 75 were previously crossed out, so only six additional
numbers are now crossed.

3 5 7 /9 11 13////15 17 19 ///21 23 ///25 ///27 29 31 ///33 ///35
37////39 41 43 ///45 47 49 ///51 53 ///55 ///57 59 61////63 ///65 67 ///69
71 73 ///75 77 79 ////81 83 ///85 ///87 89 91 ///93////95 97 ////99

Prime Numbers 3

Now 7 is the next smallest uncrossed number, so we cross
out starting from 72: 49, 63, 77, 91. Note that 63 was pre-
viously crossed out, so only three additional numbers are
crossed.

3 5 7 /9 11 13////15 17 19 ///21 23 ///25 ///27 29 31 ///33 ///35
37////39 41 43 ///45 47////49 ///51 53 ///55 ///57 59 61////63 ///65 67 ///69
71 73 ///75////77 79 ////81 83 ///85 ///87 89////91 ///93////95 97 ////99

Now the next smallest uncrossed number is 11, but 112 =
121 is greater than 100, so sieving is complete. The list of
primes is 2 followed by the remaining uncrossed numbers: 3,
5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, and 97.

The algorithm outputs primes in Step 1 (the only even
prime 2), Step 3 (the sieving primes), and Step 6 (sweeping
up the primes that survived the sieve). The word “output”
can mean anything. It is common to collect the primes in
a list, but depending on your needs, you could count them,
sum them, or use them in many other ways.

The Sieve of Eratosthenes runs in time O(n log log n), and
because the only operations in the inner loop (Step 4) are a
single comparison, addition and crossing-out, it is very fast
in practice.

There are other ways to make lists of prime numbers. If
memory is constrained, or if you want only the primes on
a limited range from m to n, you may be interested in the
segmented Sieve of Eratosthenes, which finds the primes in
blocks; the sieving primes are those less than

√
n, and the

minimum multiple of each sieving prime in each segment
is reset at the beginning of the next segment. A. O. L.
Atkin, an IBM researcher, invented a sieve that is faster than
the Sieve of Eratosthenes, as it crosses out multiples of the
squares of the sieving primes after some precomputations.
Paul Pritchard, an Australian mathematician, has developed
several methods of sieving using wheels that have time com-
plexity O(n/ log log n), which is asymptotically faster than
the Sieve of Eratosthenes, though in practice Pritchard’s
sieves are somewhat slower since the bookkeeping in each
step of the inner loop is more involved.

Sometimes instead of the primes less than n you need the
first x primes. The simplest method is to estimate the value
of n using the Prime Number Theorem, first conjectured by
Carl Friedrich Gauss in 1792 or 1793 (at the age of fifteen)
and proved independently by Jacques Hadamard and Charles
Jean de la Vallée-Poussin in 1896, which states that there are
approximately x/logex primes less than x. A corollary to the
Prime Number Theorem states that, for n > 5, the nth prime
number Pn is on the range n log n < Pn < n(log n+log log n)
so to compute the first x primes, sieve to n(log n+ log log n)
and discard the excess.

By the way, many people implement a function to list the
prime numbers to a limit that they call the Sieve of Er-
atosthenes, but really isn’t; their functions use trial division
instead. If you use a modulo operator, or division in any
form, your algorithm is not the Sieve of Eratosthenes, and
will run much slower than the algorithm described above. On
a recent-vintage personal computer, a properly-implemented

Sieve of Eratosthenes should be able to list the 78498 primes
less than a million in less than a second.

2 Trial Division

We turn next to the problem of classifying a number n as
prime or composite. The oldest method, and for nearly two
thousand years the only method, was trial division. If n has
no remainder when divided by 2, it is composite. Otherwise,
if n has no remainder when divided by 3, it is composite.
Otherwise, if n has no remainder when divided by 4, it is
composite. Otherwise, And so on. Iteration stops, and
the number is declared prime, when the trial divisor is greater
than

√
n. We can see that this is so because, if n = p ·q, then

one of p or q must be less than
√
n while the other is greater

than
√
n (unless p and q are equal, and n is a perfect square).

A simple optimization notes that if the number is even it is
composite, and if the number is odd any factor must be odd,
so it is necessary to divide only by the odd numbers greater
than 2, not by the even numbers.

Algorithm 2.A: Primality Testing by Trial Division: De-
termine if an integer n > 1 is prime or composite:

1. [Finished if even] If n is even, return COMPOSITE and
stop.

2. [Initialize for odd] Set d← 3.

3. [Terminate if prime] If d2 > n, return PRIME and stop.

4. [Trial division] If n ≡ 0 (mod d), return COMPOSITE
and stop.

5. [Iterate] Set d← d+ 2 and go to Step 3.

As an example, consider the number 100524249167. It is
not even. Dividing by 3 gives a remainder of 2. Dividing by
5 gives a remainder of 2. Dividing by 7 gives a remainder
of 6. Dividing by 9 gives a remainder of 5. Dividing by 11
gives a remainder of 1. Dividing by 13 gives a remainder of
4. Dividing by 15 gives a remainder of 2. Dividing by 17
gives a remainder of 8. Dividing by 19 gives a remainder
of 3. Dividing by 21 gives a remainder of 20. Dividing by
23 gives a remainder of 0 and, in Step 4, demonstrates that
100524249167 = 23 · 127 · 239 · 311 · 463 is composite.

There are other optimizations possible. If you have a list
of prime numbers at hand, you can use only the primes as
trial divisors and skip the composites, which makes things go
quite a bit faster; this works because, if you’ve already tested
its component primes, it is not possible for a composite to
be a divisor. If you can’t afford the space to store a list of
primes, you can use one of Pritchard’s wheels, just as with
the sieve.

Trial division iterates until it reaches either the smallest
prime factor of a number or its square root. Most composites
are identified fairly quickly; it’s the primes that take longer,
as all the trial divisors fail one by one. In general, the time
complexity of trial division is O(

√
n), and if n is large it will

4 Programming with

take a very long time. Thus, trial division is best limited
to cases where n is small, less than a billion or thereabouts.
If n is large, it is common to use probabilistic methods to
distinguish primes from composites, as a later section will
show.

Another problem for which trial division provides a solu-
tion is the problem of breaking down a composite integer into
its prime factors. The ancient Greek mathematicians proved
the Fundamental Theorem of Arithmetic that the factoriza-
tion of a number is unique, ignoring the order of the factors.
Modern mathematicians use the difficulty of the factorization
process to provide cryptographic security for the internet.
Factoring integers is a hard and honorable problem.

Euclid gave the proof of the Fundamental Theorem of
Arithmetic in his book Elements. The proof is in four parts.
The first paragraph, from Book VII, Proposition 20, proves
the uniqueness of fractions, and is used in the second para-
graph that proves Book VII, Proposition 30, now known as
Euclid’s Lemma, that if a prime p divides the product ab then
either p divides a or p divides b. The third paragraph proves
that all positive integers greater than 1 can be written as the
product of primes, and the fourth paragraph proves that the
factorization is unique, which is the Fundamental Theorem
of Arithmetic, stated by Euclid in Book IX, Proposition 14.

Suppose that a ratio a : b reduces to c : d in
lowest terms, assume that c does not divide a, and
assume that c(m/n) = a. Since a : b is the same
ratio as c : d, then d(m/n) = b, which implies that
c/m = (1/n)a and d/m = (1/n)b. Therefore c/m :
d/m is the same ratio as a : b, which shows that
c : d is not in lowest terms. But that contradicts
the earlier assumption. Therefore c does divide a,
and d divides b the same number of times.

Suppose that a prime p divides the product ab
but that p does not divide a, so that p is relatively
prime to a. Let n = ab/p; this must be an integer
because p|ab. Then p/a = b/n, and p/a must be
in lowest terms, because p is relatively prime to a.
Thus, by the previous paragraph, there must be
some x for which px = b and ax = n, because the
two ratios are the same, and therefore p|b. Likewise,
if we suppose that p does not divide b, then p|a.
Thus, if p is prime and p|ab, then either p|a or p|b.

Suppose that n is the smallest positive integer
greater than 1 that cannot be writen as the product
of primes. Now n cannot be prime because such a
number is the product of a single prime, itself. Thus
the composite is n = a · b, where both a and b are
positive integers less than n. Since n is the small-
est number that cannot be written as the product
of primes, both a and b must be able to be writ-
ten as the product of primes. But then n = a · b
can be written as the product of primes simply by
combining the factorizations of a and b. But that
contradicts our supposition. Therefore, all positive
integers greater than 1 can be written as the prod-
uct of primes.

Furthermore, that factorization is unique, ig-
noring the order in which the primes are writ-
ten. Now suppose that s is the smallest posi-
tive integer greater than 1 that can be written as
two different products of prime numbers, so that
s = p1 · p2 · . . . · pm = q1 · q2 · . . . · qn. By Euclid’s
Lemma either p1 divides q1 or p1 divides q2 · . . . ·qn.
Therefore p1 = qk for some k. But removing p1 and
qk from the initial equivalence leaves a smaller inte-
ger that can be factored in two ways, contradicting
the initial supposition. Thus there can be no such s,
and all integers greater than 1 have a unique factor-
ization. —Euclid, Elements, Book IX, Proposition
14, circa 300 B.C.

There are many algorithms for factoring integers, of which
the simplest is trial division. Divide the number being fac-
tored by 2, then 3, then 4, and so on. When a factor di-
vides evenly, record it, divide the original number by the
factor, then continue the process until the remaining cofac-
tor is prime. A simple optimization notes that once the fac-
tors of 2 have been removed from a number, it is odd, and
all its factors will be odd, so it is only necessary to perform
trial division by 2 and the odd numbers starting from 3, thus
halving the work required to be done. A second optimization
stops the trial division when the factor being tried exceeds
the square root of the current cofactor, indicating that the
current cofactor is prime and is thus the final factor of the
original number. Here is a formal statement of the trial di-
vision factorization algorithm:

Algorithm 2.B: Integer Factorization by Trial Division:
Find the prime factors of a composite integer n > 1:

1. [Remove factors of 2] If n is even, output the factor 2,
set n← n/2, and go to Step 1.

2. [Initialize for odd factors] If n = 1, stop. Otherwise, set
f ← 3.

3. [Terminate if prime] If n < f2, output the factor n and
stop.

4. [Trial division] Calculate the quotient q and remainder r
when dividing n by f , so that n = qf + r with 0 ≤ r < f .

5. [Loop on odd integers] If r > 0, set f ← f + 2 and go
to Step 3. Otherwise (if r = 0), output the factor f , set
n← q, and go to Step 3.

As an example, we find the factors of n = 13195. Since
13195 is odd, Step 1 does nothing and we go to Step 2, where
f = 3. Since 32 < 13195, we calculate q = 13195/3 = 4398
and r = 1 in Step 4, so in Step 5 we set f = 3+2 = 5 and go to
Step 3. Since 52 < 13195, we calculate q = 13195/5 = 2639
and r = 0 in Step 4, so in Step 5 we output the factor 5, set
n = 2639, and go to Step 3. Since 52 < 2639, we calculate
q = 2639/5 = 527 and r = 4 in Step 4, so in Step 5 we set
f = 5+2 = 7 and go to Step 3. Since 72 < 2639, we calculate
q = 2639/7 = 377 and r = 0 in Step 4, so in Step 5 we output

Prime Numbers 5

the factor 7, set n = 377, and go to Step 3. Since 72 < 377,
we calculate q = 377/7 = 53 and r = 6 in Step 4, so in Step 5
we set f = 7 + 2 = 9 and go to Step 3. Since 92 < 377, we
calculate q = 377/9 = 41 and r = 8 in Step 4, so in Step 5
we set f = 9 + 2 = 11 and go to Step 3. Since 112 < 377, we
calculate q = 377/11 = 34 and r = 3 in Step 4, so in Step 5
we set f = 11+2 = 13 and go to Step 3. Since 132 < 377, we
calculate q = 377/13 = 29 and r = 0 in Step 4, so in Step 5
we output the factor 13, set n = 29, and go to Step 3. Since
29 < 132, we output the factor 29 in Step 3 and stop. The
complete factorization is 13195 = 5 · 7 · 13 · 29.

Step 1 removes factors of 2 from n. If you like, you can
extend that to other primes: remove factors of 3, then factors
of 5, then factors of 7, and so on, never wasting the time to
trial-divide by a composite. Of course, that requires you
to pre-compute and store the primes up to

√
n, which may

be inconvenient. If you prefer, there is a method known as
wheel factorization, akin to Pritchard’s sieving wheels, that
achieves most of the benefits of trial division by primes but
requires only a small, constant amount of extra space to store
the wheel.

The time complexity of trial division is O(
√
n), as all trial

divisors up to the square root of the number being factored
must potentially be tried. In practice, you will generally want
to choose a bound on the maximum divisor you are willing
to test, depending on the speed of your hardware and on
your patience; generally speaking, the bound should be fairly
small, perhaps somewhere between a thousand and a million.
Then, if you have reached the bound without completing
the factorization, you can turn to a different, more potent,
method of integer factorization.

3 Pseudoprimality Checking

As we saw above, trial division can be used to determine
if a number n is prime or composite, but is very slow. Of-
ten it is sufficient to show that n is probably prime, which
is a very much faster calculation; the French number theo-
rist Henri Cohen calls numbers that pass a probable-prime
test industrial-grade primes. The most common method of
testing an industrial-grade prime is based on a theorem that
dates to 1640.

Pierre de Fermat was a French lawyer at the Parlement
in Toulouse, a jurist, and an amateur mathematician who
worked in number theory, probability, analytic geometry,
differential calculus, and optics. Fermat’s Little Theorem
states that if p is a prime number, then for any integer a it is
true that ap ≡ a (mod p), which is frequently stated in the
equivalent form ap−1 ≡ 1 (mod p) by dividing both sides
of the congruence by a, assuming a 6= 0. As was his habit,
Fermat gave no proof for his theorem, which was proved
by Gottfried Wilhelm von Leibniz forty years later and first
published by Leonhard Euler in 1736. This formula gives us
a way to distinguish primes from composites: if we can find
an a for which Fermat’s Little Theorem fails, then p must be
composite.

But there is a problem. There are some numbers, known
as Carmichael numbers, that are composite but pass Fer-
mat’s test for all a; the smallest Carmichael number is
561 = 3 · 11 · 17, and the sequence begins 561, 1105, 1729,
2465, 2821, 6601, 8911, 10585, 15841, 29341, In 1976,
Gary Lee Miller, a computer science professor at Carnegie
Mellon University, developed an alternate test for which
there are no strong liars, that is, there are no numbers for
which there is no a that distinguishes prime from composite.
A strong pseudoprime to base a is an odd composite number
n = d2s + 1 with d odd for which either ad ≡ 1 (mod n)
or ad·2r ≡ −1 (mod n) for some r = 0, 1, . . . , s − 1. This
works because n = 2m + 1 is odd, so we can rewrite Fer-
mat’s Little Theorem as a2m − 1 ≡ (am − 1)(am + 1) ≡ 0
(mod n). If n is prime, it must divide one of the factors, but
can’t divide both because it would then divide their differ-
ence (am + 1) − (am − 1) = 2. Miller’s observation leads to
the strong pseudoprime test.

Algorithm 3.A: Strong Pseudoprime Test: Determine if a
on the range 1 < a < n is a witness to the compositeness of
an odd integer n > 2:

1. [Initialize] Set d← n− 1. Set s← 0.

2. [Reduce while even] If d is even, set d ← d/2, set s ←
s+ 1, and go to Step 2.

3. [Easy return?] Set t ← ad (mod n). If t = 1 or
t = n− 1, output PROBABLY PRIME and stop.

4. [Terminate?] Set s← s−1. If s = 0, output COMPOSITE
and stop.

5. [Square and test] Set t ← t2 (mod n). If t = n −
1, output PROBABLY PRIME and stop. Otherwise, go to
Step 4.

The algorithm is stated differently than the math given
above, though the result is the same. In the math, we calcu-
lated ad·2r

, which is initially ad when r = 0, then a2d, then
a4d, and so on; in other words, ad is squared at each step.
Step 5 thus reduces the modular operation from exponen-
tiation to multiplication; the strength reduction makes the
code simpler and faster.

As an example, consider the prime number 73 = 23 · 9 + 1;
at the end of Step 2, d = 9 and s = 3. If the witness is 2,
then 29 ≡ 1 (mod 73) and 73 is declared PROBABLY PRIME
in Step 3. If the witness is 3, then 39 ≡ 46 (mod 73) and
the test of Step 3 is indeterminate, but 32·9 ≡ 72 ≡ −1
(mod 73) in the second iteration of Step 5, and 73 is de-
clared PROBABLY PRIME. On the other hand, the composite
number 75 = 21 · 37 + 1 is declared COMPOSITE with witness
2 because237 ≡ 47 (mod 75) in Step 3. One more example
is the composite number 2047 = 23 · 89, which is declared
PROBABLY PRIME by the witness 2 but COMPOSITE by the wit-
ness 3; 2047 is the smallest number for which 2 is a strong
liar to its compositeness.

Miller proved that n must be prime if no a from 2 to
70(loge n)2 is a witness to the compositeness of n; Eric Bach,

6 Programming with

a professor at the University of Wisconsin in Madison, later
reduced the constant from 70 to 2. Unfortunately, the proof
assumes the Riemann Hypothesis and can’t be relied upon
because the Riemann Hypothesis remains unproven. How-
ever, Michael O. Rabin, an Israeli computer scientist and
recipient of the Turing Award, used Miller’s strong pseu-
doprime test to build a probabilistic primality test. Rabin
proved that for any odd composite n, at least 3/4 of the
bases a are witnesses to the compositeness of n; although
that’s the proven lower bound, in practice the proportion
is much higher than 3/4. Thus, the Miller-Rabin method
performs k strong pseudoprime tests, each with a different
a, and if all the tests pass the method concludes that n is
prime with probability at least 4−k, and in practice much
higher; a common value of k is 25, which gives a maximum
probability of 1 error in 1017.

Algorithm 3.B: Miller-Rabin Pseudoprimality Test: De-
termine if an odd integer n is prime with a probability of at
least 4−k by performing k strong pseudoprime tests:

1. [Terminate?] If k = 0, output PROBABLY PRIME and
stop.

2. [Strong-pseudoprime test] Choose a random number a
such that 1 < a < n. Perform a strong pseudoprime test
using Algorithm 3.A to determine if a is a witness to the
compositeness of n.

3. [Pseudoprime?] If the strong pseudoprime test indicates
a is a witness to the compositeness of n, output COMPOSITE
and stop. Otherwise, set k ← k − 1 and go to Step 1.

Although the algorithm given above specifies random num-
bers for the bases of the strong pseudoprime test, it is com-
mon to fix the bases in advance, based on the value of n. If
n is a 32-bit integer, it is sufficient to test on the three bases
2, 7, and 61; all the odd numbers less than 232 have been
tested and no errors in the determination of primality exist.
If n is less than a trillion, it is sufficient to test to the bases
2, 13, 23, and 1662803. Gerhard Jaesche used the first seven
primes as bases and determined that the first false positive
is 341550071728321. And Zhenxiang Zhang plausibly con-
jectures that there are no errors less than 1036 when using
the first twenty primes as bases.

As an example, we determine the primality of 2149 −
1. By Algorithm 3.A, 3 is a witness that 2149 − 1 =
86656268566282183151·8235109336690846723986161 is com-
posite. That determination would be impossible for trial di-
vision, at least in any reasonable time frame, as the Prime
Number Theorem suggests there are approximately 1.9 ·1018

primes to be tested.
Steps 3 and 5 of Algorithm 3.A require modular exponenti-

ation. Some languages provide modular exponentiation as a
built-in function, but others don’t. If your language doesn’t,
you will have to write your own function. You should not
write your function by first performing the exponentiation
and then performing the modulo operation, as the interme-

diate result of the exponentiation can be very large. Instead,
use the square-and-multiply algorithm.

Algorithm 3.C: Modular Exponentiation: Compute be

(mod m) with b, e and m all positive integers:

1. [Initialize] Set r ← 1.

2. [Terminate?] If e = 0, output r and stop.

3. [Multiply if odd] If e is odd, set r ← r · b (mod m).

4. [Square and iterate] Set e ← be/2c. Set b ← b2

(mod m). Go to Step 2.

Consider the calculation 43713 (mod 1741) = 819. Ini-
tially b = 437, e = 13, r = 1 and the test in Step 2
fails. Since e is odd, r = 1 · 437 = 437 in Step 3, then
e = 13/2 = 6 and b = 4372 (mod 1741) = 1200 in Step 4
and the test in Step 2 fails. Since e is even, r = 437 is
unchanged in Step 3, then e = 6/2 = 3 and b = 12002

(mod 1741) = 193 in Step 4 and the test in Step 2 fails.
Since e is odd, r = 437 · 193 (mod 1741) = 773 in Step 3,
then e = 3/2 = 1 and b = 1932 (mod 1741) = 688 in Step 4
and the test in Step 2 fails. Since e is odd, r = 773 · 688
(mod 1741) = 819 in Step 3, then e = 1/2 = 0 and b = 6882

(mod 1741) = 1533 in Step 4. At this point the test in Step 2
succeeds and the result r = 819 is returned. By the way,
the intermediate calculation results in the very large number
43713 = 21196232792890476235164446315006597, so you can
see why Algorithm 3.C is preferable.

The time complexity of the Miller-Rabin primality checker
is O(1), which is vastly better than trial division. The time
for the strong pseudoprime test depends on the number of
factors of 2 found in n− 1, which is independent of n. Like-
wise, the number k of strong pseudoprime tests is indepen-
dent of n, so it contributes to the implied constant, not to
the overall order. If n is large, the arithmetic takes time
O(log log n), but we ignore that in our analysis.

There are other methods for quickly checking the primal-
ity of a number, including the Baillie-Wagstaff method that
combines a strong pseudoprime test base 2 with a Lucas
pseudoprime test and the method of Mathematica that adds
a strong pseudoprime test base 3 to the Baillie-Wagstaff
method; both methods are faster than the Miller-Rabin
method, and also give fewer false positives. If a slight chance
of error is too much for you, and you need to prove the pri-
mality of a number, you can use the trial division of Al-
gorithm 2.A, there is a method of Pocklington that uses the
factorization of n−1, a method using Jacobi sums (the APR-
CL method), a method using elliptic curves due to Atkin and
Morain, and the new AKS method, which operates in proven
polynomial time but is not yet practical.

4 Pollard’s Rho Method

In 1975, British mathematician John Pollard invented a
method of integer factorization that finds factors in time

Prime Numbers 7

O(4
√
n), which is the square root of the O(

√
n) time com-

plexity of trial division. The method is simple to program
and takes only a small amount of auxiliary space. Before
we explain Pollard’s algorithm, we discuss two elements of
mathematics on which it relies, the Chinese Remainder The-
orem and the birthday paradox.

The original version of the Chinese Remainder Theorem
was stated in the third-century by the Chinese mathemati-
cian Sun Zi (his name is sometimes spelled Sun Tsu or Sun
Tzu, but he is not the same person as the famous writer on
the art of war) in his book Sun Zi suanjing (literally, The
Mathematical Classic of Sun Zi), and was proved by the In-
dian mathematician Aryabhata in the sixth century:

Let r and s be positive integers which are rel-
atively prime and let a and b be any two integers.
Then there exists an integer n such that n ≡ a
(mod r) and n ≡ b (mod s). Furthermore, n is
unique modulo the product r · s.

Sun Zi gave an example: When a number is divided by 3,
the remainder is 2. When the same number is divided by 5
the remainder is 3. And when the same number is divided
by 7, the remainder is 2. The smallest number that satisfies
all three criteria is 23, which you can verify easily. And since
the least common multiple of 3, 5, and 7 is 105, any number
of the form 23 + 105k, from the arithmetic progression 23,
128, 233, 338, . . . , is also a solution. Sun Zi used this method
to count the men in his emperor’s armies; arrange them in
columns of 11, then 12, then 13, take the remainder at each
step, and calculate the number of soldiers.

In the theory of probability, the “birthday paradox” calcu-
lates the likelihood that in a group of p people two of them
will have the same birthday. Obviously, in a group of 367
people the probability is 100%, since there are only 366 pos-
sible birthdays. What is surprising is that there is a 99%
probability of a matching pair in a group as small as 57 peo-
ple and a 50% probability of a matching pair in a group as
small as 23 people. If, instead of birthdays, we consider inte-
gers modulo n, there is a 50% probability that two integers
are congruent modulo n in a group of 1.177

√
n integers.

Pollard’s rho algorithm uses the quadratic congruential
random-number generator x2 + c (mod n) with c /∈ {0,−2}
to generate a series of random integers xk. By the Chinese
Remainder Theorem, if n = p · q, then x (mod n) corre-
sponds uniquely to the pair of integers x (mod p) and x
(mod q). Furthermore, the xk sequence also follows the Chi-
nese Remainder Theorem, so that xk+1 = [xk (mod p)]2+c
(mod p) and xk+1 = [xk (mod q)]2 + c (mod q), so that
the sequence of xk falls into a much shorter cycle of length√
p by the birthday paradox. Thus p is identified when xk

and xk+1 are congruent modulo p, which can be determined
when gcd(|xk − xk+1|, n) = p is between 1 and n.

Depending on the values of p, q and c, it is possible that
the random-number generator may reach a cycle before a
factor is found. Thus, Pollard used Robert Floyd’s tortoise-
and-hare cycle-detection method. The sequence of xk starts
with two values the same, call them t and h. Then each time

t is incremented, h is incremented twice; the hare runs twice
as fast as the tortoise. If the hare reaches the tortoise, that
is, t ≡ h (mod n), before a factor is found, then a cycle has
been reached and further work is pointless. At that point,
either the factorization attempt can be abandoned or a new
random-number generator can be tried using a different c.

Pollard called his method “Monte Carlo factorization” be-
cause of the use of random numbers. The algorithm is now
called the rho algorithm because the sequence of xk values
has an initial tail followed by a cycle, giving it the shape of
the Greek letter rho ρ. Fortunately the algorithm is much
simpler than the explanation.

Algorithm 4.A: Pollard’s Rho Method: Find a factor of an
odd composite integer n > 1:

1. [Initialization] Set t ← 2, h ← 2 and c ← 1. Define the
function f(x) = x2 + c (mod n).

2. [Iteration] Set t← f(t), h← f(f(h)), and d← gcd(t−
h, n). If d = 1, go to Step 2.

3. [Termination] If d < n, output d and stop. Otherwise,
either stop with failure or continue by setting t← 2, h←
2, and c ← c + 1, redefining the function f(x) using the
new value of c and going to Step 2.

As an example, we consider the factorization of 8051. Ini-
tially, t = 2, h = 2, and c = 1. After one iteration of
Step 2, t = 22 + 1 = 5 (mod 8051), h = (22 + 1)2 + 1 = 26
(mod 8051), and d = gcd(5−26, 8051) = 1. After the second
iteration of Step 2, t = 52 +1 = 26 (mod 8051), h = (262 +
1)2 +1 = 7474 (mod 8051), and d = gcd(26−7474, 8051) =
1. After the third iteration of Step 2, t = 262 + 1 = 677
(mod 8051), h = (74742 + 1)2 + 1 = 871 (mod 8051), and
d = gcd(677− 871, 8051) = 97, which is a factor of 8051; the
complete factorization is 8051 = 83 · 97.

Be sure before you begin that n is composite; if n is prime,
then d will always be 1 (because if n is prime it is always co-
prime to every number smaller than itself) and the algorithm
will loop forever. As with trial division, it is probably wise
to set some bound on the maximum number of steps you are
willing to take in the iteration of Step 2, because large fac-
tors can take a long time to find using this algorithm. You
should also be careful not to let c be 0 or −2, because in
those cases the random numbers aren’t very random. Note
that the factor found in Step 3 may not be prime, in which
case you can apply the algorithm again to the reduced factor,
using a different c. And of course, once you have one factor,
you can continue by factoring the remaining cofactor.

Algorithm 4.B: Integer Factorization by Pollard’s Rho
Method: Find all the prime factors of a composite integer
n > 1:

1. [Remove factors of 2] If n is even, output the factor 2,
set n← n/2, and go to Step 1.

2. [Terminate if prime] If n is prime by the method of Al-
gorithm 3.B, output the factor n and stop.

8 Programming with

3. [Find a factor] Use Algorithm 4.A to find a factor of n
and call it f . Output the factor f , set n← n/f , and go to
Step 2.

There are two ways in which Pollard’s algorithm can be
improved. First, it should bother you that each number in
the random sequence is computed twice; it bothered the Aus-
tralian mathematician Richard Brent, who devised a cycle-
finding algorithm based on powers of 2 that computes each
number in the random sequence only once, and it is Brent’s
variant that is most often used today. A second improvement
notes that for any a, b, and n, gcd(ab, n) > 1 if and only if
at least one of gcd(a, n) > 1 or gcd(b, n) > 1, and accumu-
lates the products of the elements of the t and h sequences
for several steps (for large n, 100 steps is common) before
computing the gcd, thus saving much time; if the gcd is n,
then it is possible either that a cycle has been found or that
two factors were found since the last gcd, in which case it
is necessary to return to values saved from the previous gcd
calculation and iterate one step at a time.

The time complexity of Pollard’s rho algorithm depends
on the unknown factor d. By the birthday paradox, in the
average case it will take 1.177

√
d steps to find the factor,

or O(
√
d). Thus, if n is the product of two primes, it will

take O(4
√
n) to perform the factorization, assuming the two

primes are roughly the same size. In other words, a million
iterations of trial division will find factors up to a million,
while a million iterations of Pollard’s rho method will find
factors up to a trillion; that’s why you want to switch from
trial division to Pollard’s rho method at a fairly low bound.

5 Going Further

Although there is more to programming with prime num-
bers, we will stop here, since our small library has fulfilled
our modest goals. The five appendices give implementations
in C, Haskell, Java, Python, and Scheme, and the savvy
reader will study all of them, because while they all imple-
ment exactly the same algorithms, each does so in a different
way, and the differences are enlightening, about both the al-
gorithms and the languages. The C appendix describes the
tasteful use of the GMP multi-precision number library. The
Haskell and Scheme appendices describe some of the syntax
and semantics of those languages, on the assumption that
they are unfamiliar to many readers. The Java appendix is
the most faithful of all the appendices to the exact structure
of the algorithms, including error-checking on the inputs as
described in the preambles of each of the algorithms. The
Python and Scheme appendices are the most “real-world”
implementations, as they include error-checking on the in-
puts, bounds-checking to stop calculations that take too long,
and even a non-mathematical but highly useful extension of
the domain of the factoring functions.

Although our goals were modest, we have accomplished
much. It’s hard to improve on the optimized Sieve of Er-
atosthenes, and the Miller-Rabin primality checker will han-
dle inputs of virtually unlimited size. The rho algorithm will

find most factors up to a dozen digits or more, regardless of
the size of the number being factored.

If Pollard’s rho algorithm won’t crack your composite,
there are more powerful algorithms available, though they
are beyond our modest aspirations. The elliptic curve
method will find factors up to about thirty or forty digits
(even fifty or sixty digits if you are patient). The quadratic
sieve will split semi-primes up to about 90 digits on a sin-
gle personal computer or 120 digits on a modest network
of personal computers, and the number field sieve will split
semi-primes up to about 200 digits on that same network.
At the time this of this writing, the current record factoriza-
tion is 231 decimal digits (768 bits), which took a team of
experts about 2000 PC-years, and about eight months of cal-
endar time, on a “network” of computers around the world
connected via email.

If your goal isn’t self-study and you really want to factor
a large number, and the rho technique fails, you have several
options. A good first step is Dario Alpern’s factorization ap-
plet at http://www.alpertron.com.ar/ECM.HTM. Paul Zim-
mermann’s gmp-ecm program at http://ecm.gforge.inria.fr
uses a combination of trial division, Pollard’s rho al-
gorithm, another algorithm of Pollard known as p −
1, and Hendrik Lenstra’s elliptic curve method to
find factors. Jason Papadopoulos’ msieve program
at http://www.boo.net/˜jasonp/qs.html uses both the
quadratic sieve of Carl Pomerance and the number field sieve
of John Pollard.

There is much more to prime numbers and integer factor-
ization than we have discussed here; for instance, there are
methods other than trial division for proving the primality
of large numbers (several hundred digits) and methods other
than enumeration with a sieve for counting the primes less
than a given input number. At the end of each algorithm
above was a discussion of alternatives; the interested reader
will find that web searches for the topics mentioned will be
fruitful and interesting. A superb reference for programmers
is the book Prime Numbers: A Computational Perspective
by Richard Crandall and Carl B. Pomerance (be sure to look
for the second edition, which includes discussion of the new
AKS primality prover); beware that although the approach
is computational, there is still heavy mathematical content
in the book. You may also be interested in the Programming
Praxis web site at http://programmingpraxis.com, which has
many exercises on the theme of prime numbers.

Appendix: C

C is a small language with limited data types; integers are
limited to what the underlying hardware provides, there are
no lists, and there are no bitarrays, so we have to depend
on libraries to provide those things for us. Since we are in-
terested in prime numbers and not lists or bitarrays, we will
write the smallest libraries that are necessary to get a work-
ing program. We begin with bitarrays, which are represented
as arrays of characters in which we set and clear individual
bits using macros:

Prime Numbers 9

#define ISBITSET(x, i) ((x[i>>3] & (1<<(i&7))) != 0)
#define SETBIT(x, i) x[i>>3] |= (1<<(i&7));
#define CLEARBIT(x, i) x[i>>3] &= (1<<(i&7)) ^ 0xFF;

To declare a bitarray b of length 8n, say char b[n], and
to initialize each bit to 0, say memset(b, 0, sizeof(b));
change the 0 to 255 to set each bit initially to 1. Here is our
minimal list library:

typedef struct list {
void *data;
struct list *next;

} List;

List *insert(void *data, List *next)
{

List *new;

new = malloc(sizeof(List));
new->data = data;
new->next = next;
return new;

}

List *insert_in_order(void *x, List *xs)
{

if (xs == NULL || mpz_cmp(x, xs->data) < 0)
{

return insert(x, xs);
}
else
{

List *head = xs;
while (xs->next != NULL &&

mpz_cmp(x, xs->next->data) > 0)
{

xs = xs->next;
}
xs->next = insert(x, xs->next);
return head;

}
}

List *reverse(List *list) {
List *new = NULL;
List *next;

while (list != NULL)
{

next = list->next;
list->next = new;
new = list;
list = next;

}

return new;
}

int length(List *xs)
{

int len = 0;
while (xs != NULL)
{

len += 1;
xs = xs->next;

}
return len;

}

Lists are represented as structs of two members; the empty
list is represented as NULL. The trickiest function is reverse,
which operates in-place to make each list item point to its
predecessor. Function insert in order assumes numbers
represented using the Gnu multi-precision library, which we
will see shortly. The list functions leave all notion of memory
management to the caller.

With that out of the way, we are ready to begin work on
the prime number functions. The ancient Sieve of Eratos-
thenes uses b for the bitarray. The outer for loop indexes

through the bitarray with p and the inner for loop sieves
the multiples of p at index locations i. The final reverse
is necessary because primes are added to the outgoing list
working back to front.

List *sieve(long n)
{

char b[(n+1)/8+1];
int i, p;
List *ps = NULL;

memset(b, 255, sizeof(b));

for (p=2; p<=n; p++)
{

if (ISBITSET(b,p))
{

ps = insert((void *) p, ps);
for (i=p; i<=n; i+=p)
{

CLEARBIT(b,i);
}

}
}

return reverse(ps);
}

The optimized Sieve of Eratosthenes uses b for the bitarray,
i indexes into the bitarray, and p = 2i + 3 is the number
represented at location i of the bitarray. The first while
loop identifies the sieving primes and performs the sieving
in an inner while, and the third while loop sweeps up the
remaining primes that survive the sieve.

List *primes(long n)
{

int m = (n-1) / 2;
char b[m/8+1];
int i = 0;
int p = 3;
List *ps = NULL;
int j;

ps = insert((void *) 2, ps);

memset(b, 255, sizeof(b));

while (p*p < n)
{

if (ISBITSET(b,i))
{

ps = insert((void *) p, ps);
j = (p*p - 3) / 2;
while (j < m)
{

CLEARBIT(b, j);
j += p;

}
}
i += 1; p += 2;

}

while (i < m)
{

if (ISBITSET(b,i))
{

ps = insert((void *) p, ps);
}
i += 1; p += 2;

}

return reverse(ps);
}

We look next at the two algorithms that use trial division;
we’ll look at them together because they are so similar. We
used long integers for the Sieve of Eratosthenes because they
are almost certainly big enough, but we will use long long

10 Programming with

unsigned integers for the two trial division functions because
that extends the range of the inputs that we can consider.
The function that tests primality using trial division uses an
if to identify even numbers, then a while ranges over the
odd numbers d from 3 to

√
n.

int td_prime(long long unsigned n)
{

if (n % 2 == 0)
{

return n == 2;
}

long long unsigned d = 3;

while (d*d <= n)
{

if (n % d == 0)
{

return 0;
}
d += 2;

}

return 1;
}

The td factors function is very similar to the td prime
function. The initial if becomes a while, because we no
longer want to quit as soon as we find a single factor, and
the body of the second while also changes so that it collects
all the factors instead of quitting as soon as it finds a single
factor; the factors are stacked in increasing order as they are
discovered, hence the reversal. The list of factors, which will
contain only the original input n if it is prime, is returned as
the value of the function.

List *td_factors(long long unsigned n)
{

List *fs = NULL;

while (n % 2 == 0)
{

fs = insert((void *) 2, fs);
n /= 2;

}

if (n == 1)
{

return reverse(fs);
}

long long unsigned f = 3;

while (f*f <= n)
{

if (n % f == 0)
{

fs = insert((void *) f, fs);
n /= f;

}
else
{

f += 2;
}

}

fs = insert((void *) n, fs);
return reverse(fs);

}

We used long integers for the Sieve of Eratosthenes and
long long unsigned integers for the two trial-division al-
gorithms. Those native integer types are sufficient for those
function; usually only small n are required for the Sieve of Er-
atosthenes, and trial division is just too slow for large n. But

many applications require much larger numbers, so we need
a big-integer library, and we choose the GMP library from
GNU, which is well-known for its useful interface and fast,
bug-free implementation. You can obtain GMP from gm-
plib.org; to use it in your program, include the line #include
<gmp.h> at the top of your program, and link with the option
-lgmp.

We look next at Gary Miller’s strong pseudoprime test.
The first while computes d and s, then the if checks for
an early return, the second while computes and tests the
powers of a, and the default return is composite.

int is_spsp(mpz_t n, mpz_t a)
{

mpz_t d, n1, t;
mpz_inits(d, n1, t, NULL);
mpz_sub_ui(n1, n, 1);
mpz_set(d, n1);
int s = 0;

while (mpz_even_p(d))
{

mpz_divexact_ui(d, d, 2);
s += 1;

}

mpz_powm(t, a, d, n);
if (mpz_cmp_ui(t, 1) == 0 ||

mpz_cmp(t, n1) == 0)
{

mpz_clears(d, n1, t, NULL);
return 1;

}

while (--s > 0)
{

mpz_mul(t, t, t);
mpz_mod(t, t, n);
if (mpz_cmp(t, n1) == 0)
{

mpz_clears(d, n1, t, NULL);
return 1;

}
}

mpz_clears(d, n1, t, NULL);
return 0;

}

Let’s take a moment for a quick lesson in GMP. The
datatype of big integers is given by mpz t, where the mp is
for multi-precision, z is for integer (from the German word
Zahlen, for number), and t is to indicate a type variable. All
mpz t variables must be initialized and cleared; in exchange
for this effort, GMP takes care of all memory management
automatically. The basic operations are given as mpz add,
mpz mul, mpz powm and the like, and they all return void,
with the result given in the first argument (by analogy to an
assignment, which puts the result on the left); the various di-
vision operators have their own naming conventions. Most of
the operators have ui variants in which the second operand
(third argument) is a long unsigned integer instead of an
mpz t integer. Comparisons take two values and return a
negative integer if the first is less than the second, a positive
integer is the first is greater than the second, and 0 if the
two are equal. We use mpz powm instead of writing our own.

To determine whether a given integer is prime or composite
we use 25 random integers, saving the GMP random state in
a static variable that persists from one call of the function
to the next. The algorithm expects an integer greater than

Prime Numbers 11

2, so that is our first test. Then we check that n is odd, and
additionally that it is not divisible by 3, 5 or 7; those tests
aren’t strictly part of the algorithm, but they eliminate about
three-quarters of all positive integers, and if they determine
the compositeness of n, they are much cheaper than the full
Miller-Rabin test. And if we still don’t have an answer, we
proceed with the full algorithm with k counting down to 0.

int is_prime(mpz_t n)
{

static gmp_randstate_t gmpRandState;
static int is_seeded = 0;

if (! is_seeded)
{

gmp_randinit_default(gmpRandState);
gmp_randseed_ui(gmpRandState, time(NULL));
is_seeded = 1;

}

mpz_t a, n3, t;
mpz_inits(a, n3, t, NULL);
mpz_sub_ui(n3, n, 3);
int i;
int k = 25;
long unsigned ps[] = { 2, 3, 5, 7 };

if (mpz_cmp_ui(n, 2) < 0)
{

mpz_clears(a, n3, t, NULL);
return 0;

}

for (i = 0; i < sizeof(ps) /
sizeof(long unsigned); i++)

{
mpz_mod_ui(t, n, ps[i]);
if (mpz_cmp_ui(t, 0) == 0)
{

mpz_clears(a, n3, t, NULL);
return mpz_cmp_ui(n, ps[i]) == 0;

}
}

while (k > 0)
{

mpz_urandomm(a, gmpRandState, n3);
mpz_add_ui(a, a, 2);
if (! is_spsp(n, a))
{

mpz_clears(a, n3, t, NULL);
return 0;

}
k -= 1;

}

mpz_clears(a, n3, t, NULL);
return 1;

}

The default GMP random number generator is the
Mersenne Twister, which has good randomness properties
and a very long period; we initialize the internal state of
the random number generator with the current time (sec-
onds since the epoch). The function mpz urandomm returns
in its first argument a uniformly-distributed pseudø-random
non-negative integer less than its third argument, using and
resetting the internal state of the random number generator
in its second argument. GMP provides our is prime func-
tion under the name mpz probab prime p, but we give our
own implementation anyway, so you can see how it is done.

There are two functions that implement integer factor-
ization by pollard rho: rho factor finds a single factor,
and rho factors performs the complete factorization. The
rho factor function assumes that n is odd and composite;

t is the tortoise, h is the hare, d is the greatest common
divisor, and r is a temporary working variable holding the
difference between t and h. The function keeps cycling until
it finds a prime factor, calling itself recursively with the next
greater c if it reaches a cycle or finds a composite factor.

void rho_factor(mpz_t f, mpz_t n, long long unsigned c)
{

mpz_t t, h, d, r;

mpz_init_set_ui(t, 2);
mpz_init_set_ui(h, 2);
mpz_init_set_ui(d, 1);
mpz_init_set_ui(r, 0);

while (mpz_cmp_si(d, 1) == 0)
{

mpz_mul(t, t, t);
mpz_add_ui(t, t, c);
mpz_mod(t, t, n);

mpz_mul(h, h, h);
mpz_add_ui(h, h, c);
mpz_mod(h, h, n);

mpz_mul(h, h, h);
mpz_add_ui(h, h, c);
mpz_mod(h, h, n);

mpz_sub(r, t, h);
mpz_gcd(d, r, n);

}

if (mpz_cmp(d, n) == 0) /* cycle */
{

rho_factor(f, n, c+1);
}
else if (mpz_probab_prime_p(d, 25)) /* success */
{

mpz_set(f, d);
}
else /* found composite factor */
{

rho_factor(f, d, c+1);
}

mpz_clears(t, h, d, r, NULL);
}

The rho factors function extracts factors of 2 in the first
while, then calls rho factor repeatedly in the second while
until the remaining cofactor is prime. Function rho factors
returns the list of factors in its first argument, like all the
GMP functions.

void rho_factors(List **fs, mpz_t n)
{

while (mpz_even_p(n))
{

mpz_t *f = malloc(sizeof(*f));
mpz_init_set_ui(*f, 2);
*fs = insert(*f, *fs);
mpz_divexact_ui(n, n, 2);

}

if (mpz_cmp_ui(n, 1) == 0) return;

while (! (mpz_probab_prime_p(n, 25)))
{

mpz_t *f = malloc(sizeof(*f));
mpz_init_set_ui(*f, 0);

rho_factor(*f, n, 1);
*fs = insert_in_order(*f, *fs);
mpz_divexact(n, n, *f);

}

*fs = insert_in_order(n, *fs);
}

12 Programming with

We will need four headers, including gmp.h:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <gmp.h>

We demonstrate the functions with this main function:
int main(int argc, char *argv[])
{

mpz_t n;
mpz_init(n);
List *ps = NULL;
List *fs = NULL;

ps = sieve(100);
while (ps != NULL)
{

printf("%d%s", (int) ps->data,
(ps->next == NULL) ? "\n" : " ");

ps = ps->next;
}

ps = primes(100);
while (ps != NULL)
{

printf("%ld%s", (long) ps->data,
(ps->next == NULL) ? "\n" : " ");

ps = ps->next;
}

printf("%d\n", length(primes(1000000)));

printf("%d\n", td_prime(600851475143LL));

fs = td_factors(600851475143LL);
while (fs != NULL)
{

printf("%llu%s",
(unsigned long long int) fs->data,
(fs->next == NULL) ? "\n" : " ");

fs = fs->next;
}

mpz_t a;
mpz_init(a);
mpz_set_str(n, "2047", 10);
mpz_set_str(a, "2", 10);
printf("%d\n", is_spsp(n, a));

mpz_set_str(n, "600851475143", 10);
printf("%d\n", is_prime(n));

mpz_set_str(n, "2305843009213693951", 10);
printf("%d\n", is_prime(n));

mpz_set_str(n, "600851475143", 10);
rho_factors(&fs, n);
while (fs != NULL) {

printf("%s%s",
mpz_get_str(NULL, 10, fs->data),
(fs->next == NULL) ? "\n" : " ");

fs = fs->next;
}

}

To compile the program, say gcc prime.c -lgmp -o
prime. If you get any warnings about the cast to void *
you can safely ignore them, as it is always permissible to
cast to void. Here is the output from the program, with the
first two lines folded to accommodate the narrow columns:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

67 71 73 79 83 89 97
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

67 71 73 79 83 89 97
78498
0
71 839 1471 6857
1
0
1
71 839 1471 6857

Appendix: Haskell

Haskell is the classic purely functional language, far different
from C. We begin our look at Haskell by examining a function
that is frequently cited as the Sieve of Eratosthenes. Many
texts include a definition something like this:

primes = sieve [2..]

sieve (p:xs) p : sieve [x | x <- xs, x ‘mod‘ p > 0]

But this is not the Sieve of Eratosthenes because it is based
on division (the mod operator) rather than addition. It will
quickly become slow as the primes grow larger; try, for in-
stance, to extract a list of the primes less than a hundred
thousand. Unfortunately, a proper implementation of the
Sieve of Eratosthenes is a little bit ugly, since Haskell and
arrays don’t easily mix.

Most Haskell programs begin by importing various func-
tions from Haskell’s Standard Libraries, and ours is no ex-
ception; all imports must appear before any executable code.
ST is the Haskell state-transformer monad, which provides
mutable data structures, including Control.Monad.ST and
Data.Array.ST. Control.Monad provides imperative-style
for and when, and Data.Array.Unboxed provides arrays
that store data directly, rather than with a pointer, as long
as the data is a suitable type; we will be using arrays of
booleans, which are suitable. Finally, Data.List provides a
sort function for use by Pollard’s rho algorithm.

import Control.Monad (forM_, when)
import Control.Monad.ST
import Data.Array.ST
import Data.Array.Unboxed
import Data.List (sort)

The Sieve of Eratosthenes is implemented using exactly
the same algorithm as all the other languages, though it looks
somewhat foreign to imperative-trained eyes. Functions in
Haskell optionally begin with a declaration of the type of
the function, and we will include one in each of our func-
tions. Thus, ancientSieve :: Int -> UArray Int Bool
declares an object named ancientSieve that has type (the
double colon) that is a function (the arrow) that takes a value
of type Int and returns a value of type UArray Int Bool.
Int is some fixed-size integer based on the native machine
type. UArray is an unboxed array; Int is the type of its in-
dices and Bool is the type of its values. Note that typenames
always begin with a capital letter, as opposed to simple vari-
ables or function names that begin with a lower-case letter.

ancientSieve :: Int -> UArray Int Bool
ancientSieve n = runSTUArray $ do

bits <- newArray (2, n) True
forM_ [2 .. n] $ \p -> do

isPrime <- readArray bits p
when isPrime $ do

forM_ [2*p, 3*p .. n] $ \i -> do
writeArray bits i False

return bits

The body of the ancientSieve function is fairly atypical
of Haskell code, due to its use of arrays. The first line,
runSTUArray $ do (that parses as run, ST for the state-
transformer monad, UArray for the unboxed array), sets up

Prime Numbers 13

the array processing; the array is initialized with indices from
2 to n, with all values True, and assigned to variable bits. An
expression like {forM_ [0..x] $ \i do would be rendered
in C as for (i=0; i<=x; i++); the expression [0 .. x]
expands to 0, 1, . . . , x, and is evaluated lazily, as if by a list
generator, so the whole list is never reified all at once. Func-
tions readArray and writeArray fetch and store elements of
an array. Variable isPrime is assigned either True or False,
depending on the value of the element of the bits array with
value i. In the inner loop, iteration starts at 2*p, and each
iteration steps by p, which is the difference between the first
and second elements of the list, continuing until i is greater
than n.

ancientPrimes :: Int -> [Int]
ancientPrimes n = [p | (p, True) <-

assocs $ ancientSieve n]

The ancientPrimes function is simple; assocs collects
the elements of the bits in order, paired with their index,
and those that are True are included in the out-going list of
primes. The type signature indicates that the function takes
an Int and returns a list of Int values, as indicated by the
square brackets. The overall structure of the function is a
list which has 2 as its head joined by a colon : to a list
comprehension between square brackets [...]. The list
comprehension has two parts. The expression p before the
vertical bar | defines the elements of the output list. The
generator after the bar assigns to the tuple all of the elements
returned by the assocs function and keeps only those where
the second element of the tuple is True, binding the first
element of the tuple to the variable p that is used in the
result expression.

Optimized sieve and primes functions are shown below.
The only differences are in the array indexing, where the
array index i is mapped to the prime number p by the ex-
pression p = 2i+ 3.

sieve :: Int -> UArray Int Bool
sieve n = runSTUArray $ do

let m = (n-1) ‘div‘ 2
r = floor . sqrt $ fromIntegral n

bits <- newArray (0, m-1) True
forM_ [0 .. r ‘div‘ 2 - 1] $ \i -> do

isPrime <- readArray bits i
when isPrime $ do

let a = 2*i*i + 6*i + 3
b = 2*i*i + 8*i + 6

forM_ [a, b .. (m-1)] $ \j -> do
writeArray bits j False

return bits

primes :: Int -> [Int]
primes n = 2 : [2*i+3 | (i, True) <- assocs $ sieve n]

It is simple to test primality by trial division because
Haskell offers a simple way of generating the list of 2 followed
by odd numbers. The colon operator, pronounced “cons,” is
the list constructor. The expression [3,5..] is a list con-
structor (anything surrounded by square brackets is a list)
with 3 as its first element, 5 as its second element, and so on
in an arithmetic progression that increases by 5 − 3 = 2 at
each step. The .. operator at the end of the list expression
signifies that the list goes on forever; if there is a value after
the .. operator, that is the ending value included in list.

tdPrime :: Int -> Bool
tdPrime n = prime (2:[3,5..])

where prime (d:ds)
| n < d * d = True
| n ‘mod‘ d == 0 = False
| otherwise = prime ds

Factorization by trial division is likewise expressed more
simply in Haskell than in other languages because of the
list generator syntax. The guard expressions of the local
facts function makes tdFactors very easy to read. Note
that we used a where clause, but could equally have used a
let ...in; in this case the choice is a matter of personal
preference, though there are other situations where one or
the other is required.

tdFactors :: Int -> [Int]
tdFactors n = facts n (2:[3,5..])

where facts n (f:fs)
| n < f * f = [n]
| n ‘mod‘ f == 0 =

f : facts (n ‘div‘ f) (f:fs)
| otherwise = facts n fs

As in C, we have gone as far as we can using native inte-
gers, and we’ll switch at this point to big integers; note that
Haskell has no long integers, so it’s more restrictive than C.
The switch is simpler for Haskell than for C, since big inte-
gers are provided directly in the language, in the Integer
datatype. For the Miller-Rabin primality test, we first need
to write the function to perform modular exponentiation,
since Haskell doesn’t provide one in any of its standard li-
braries:

powmod :: Integer -> Integer -> Integer -> Integer
powmod b e m =

let times p q = (p*q) ‘mod‘ m
pow b e x

| e == 0 = x
| even e = pow (times b b)

(e ‘div‘ 2) x
| otherwise = pow (times b b)

(e ‘div‘ 2) (times b x)
in pow b e 1

This function is rather more typical of Haskell than the
sieve function that used arrays. The signature indicates
that the function takes three Integer values and returns an
Integer value. The function is written as if it is three func-
tions because all functions in Haskell are curried, so powmod
is actually a function that takes an integer b and returns a
function that takes an integer e that returns a function that
takes an integer m and returns an Integer; thus, it is only
a colloquialism, and frankly wrong, to say that powmod is
a function that takes three integers and returns an integer.
The let ...in defines local values. Local function times
performs modular multiplication mod m. Local function pow
has three definitions, each with a guard (the predicate be-
tween the vertical bar | and the equal sign =); the expression
corresponding to the first matching guard predicate is cal-
culated and returned as the value of the function. Here, the
first guard expression checks for termination and the other
two expressions call the pow function recursively.

The strong pseudoprime test is implemented by three lo-
cal functions in the isSpsp function: getDandS extracts the
powers of 2 from n − 1, spsp takes the tuple returned by

14 Programming with

getDandS as input and performs the easy-return test, and
doSpsp computes and tests the powers of a. Note that mod
and div are curried prefix functions; the back-quotes turn
them into binary infix functions. Note also that if is an ex-
pression in Haskell, as opposed to a statement in imperative
languages, which means that it returns a value instead of
controlling program flow; thus there may be no else-less if,
and both consequents of the if must have the same type.

isSpsp :: Integer -> Integer -> Bool
isSpsp n a =

let getDandS d s =
if even d then getDandS (d ‘div‘ 2) (s+1)

else (d, s)
spsp (d, s) =

let t = powmod a d n
in if t == 1 then True else doSpsp t s

doSpsp t s
| s == 0 = False
| t == (n-1) = True
| otherwise = doSpsp ((t*t) ‘mod‘ n) (s-1)

in spsp $ getDandS (n-1) 0

Haskell makes it difficult to work with random numbers
(it’s possible, though inconvenient, in the same way that ar-
rays were inconvenient in the Sieve of Eratosthenes) because
they require a state to be maintained from one call to the
next, so we use the primes less than a hundred as the bases
for the Miller-Rabin primality test.

isPrime :: Integer -> Bool
isPrime n =

let ps = [2,3,5,7,11,13,17,19,23,29,31,37,41,
43,47,53,59,61,67,71,73,79,83,89,97]

in n ‘elem‘ ps || all (isSpsp n) ps

The rhoFactor function finds a single factor by the rho
method. Function f is the random-number generator. Func-
tion fact implements the tortoise-and-hare loop recursively;
the computations in the where clause are done prior to the
guard expressions in the body of the function even though
they syntactically follow the guard expressions in the source
code, which can be confusing if you are unaccustomed to it.
The rhoFactor function is called recursively with a different
constant for the random number generator if the loop falls
into a cycle (the d == n clause) or finds a composite factor
(the otherwise clause).

rhoFactor :: Integer -> Integer -> Integer
rhoFactor n c =

let f x = (x*x+c) ‘mod‘ n
fact t h

| d == 1 = fact t’ h’
| d == n = rhoFactor n (c+1)
| isPrime d = d
| otherwise = rhoFactor d (c+1)
where

t’ = f t
h’ = f (f h)
d = gcd (t’ - h’) n

in fact 2 2

Function rhoFactors calls rhoFactor repeatedly until it
completes the factorization of n. The first two clauses extract
factors of 2, the third clause tests primality of a remaining co-
factor, and the fourth clause adjusts n and the list of factors
after calling rhoFactor. We solved the problem of factoring
a perfect power of 2 differently than in the C version of the
program, stopping as soon as n is reduced to 2.

rhoFactors :: Integer -> [Integer]
rhoFactors n =

let facts n
| n == 2 = [2]
| even n = 2 : facts (n ‘div‘ 2)
| isPrime n = [n]
| otherwise = let f = rhoFactor n 1

in f : facts (n ‘div‘ f)
in sort $ facts n

A main program that exercises the functions defined above
is shown below. To compile the program with the GHC
compiler, assuming it is stored in file primes.hs, say ghc
-o prime prime.hs, and to run the program say ./prime.

main = do
print $ ancientPrimes 100
print $ primes 100
print $ length $ primes 1000000
print $ tdPrime 716151937
print $ tdFactors 8051
print $ powmod 437 13 1741
print $ isSpsp 2047 2
print $ isPrime 600851475143
print $ isPrime 2305843009213693951
print $ rhoFactors 600851475143

The output is the same as the C version of the program,
except for the reduced input to tdFactors.

Appendix: Java

Java is an object-oriented language, widely used, with a very
large collection of libraries. Like Haskell, Java provides big
integers, linked lists and bit arrays natively, so we can quickly
jump in to the coding. The functions are shown below, but
we leave it to you to package them into classes as you wish;
in the sample code we put all the functions into class Main.
We will be more careful here than in the two prior versions
to ensure that we validate all the input arguments. We begin
with the Sieve of Eratosthenes, which we limit to ints, but
if you prefer a larger data type you are free to change it.

public static LinkedList sieve(int n)
{

BitSet b = new BitSet(n);
LinkedList ps = new LinkedList();

b.set(0,n);

for (int p=2; p<n; p++)
{

if (b.get(p))
{

ps.add(p);
for (int i=p+p; i<n; i+=p)
{

b.clear(i);
}

}
}

return ps;
}

We used the built-in data types BitSet and LinkedList;
indeed, it is one of the benefits of programming in Java that
the standard libraries provide so much useful code. In the
optimized version of the Sieve of Eratosthenes, we also use
the built-in exception IllegalArgumentException instead
of creating our own exception; it’s easier, and just as clear.

Prime Numbers 15

public static LinkedList primes(int n)
{

if (n < 2)
{

throw new IllegalArgumentException("must be greater than one");
}

int m = (n-1) / 2;
BitSet b = new BitSet(m);
b.set(0, m);

int i = 0;
int p = 3;
LinkedList ps = new LinkedList();
ps.add(2);

while (p * p < n)
{

if (b.get(i))
{

ps.add(p);
int j = 2*i*i + 6*i + 3;
while (j < m)
{

b.clear(j);
j = j + 2*i + 3;

}
}
i += 1; p += 2;

}

while (i < m)
{

if (b.get(i))
{

ps.add(p);
}
i += 1; p += 2;

}

return ps;
}

Another of the libraries that Java provides is the
BigInteger library, and we switch from normal integers to
BigInteger for the rest of our functions; int is sufficient for
the Sieve of Eratosthenes, because sieving with a large n pro-
duces too much output to be useful, but for the other func-
tions BigInteger is definitely useful. The tdPrime function
validates its input in the first if, checks for even numbers in
the second if statement, and checks for odd divisors in the
body of the while.

public static Boolean tdPrime(BigInteger n)
{

BigInteger two = BigInteger.valueOf(2);

if (n.compareTo(two) < 0)
{

throw new IllegalArgumentException("must be greater than one");
}

if (n.mod(two).equals(BigInteger.ZERO))
{

return n.equals(two);
}

BigInteger d = BigInteger.valueOf(3);

while (d.multiply(d).compareTo(n) <= 0)
{

if (n.mod(d).equals(BigInteger.ZERO))
{

return false;
}
d = d.add(two);

}

return true;
}

The tdFactors function domain-checks the input, removes
factors of 2, and, if the remaining cofactor is not 1, begins
a loop over the odd numbers starting from 3, trying each
odd number in turn until it finds factors and the remaining
cofactor is greater than the square of the current factor. Note
the comparison to 1 after all the factors of 2 are removed,
which is necessary to prevent a factor of 1 from being added
to the list of factors when n is a power of 2; we handled that
differently in the Haskell version of the program. As with
the GMP functions in C, the messiness of doing arithmetic
by calling functions hides instead of writing expressions the
underlying simplicity of the algorithm.

public static LinkedList tdFactors(BigInteger n)
{

BigInteger two = BigInteger.valueOf(2);
LinkedList fs = new LinkedList();

if (n.compareTo(two) < 0)
{

throw new IllegalArgumentException("must be greater than one");
}

while (n.mod(two).equals(BigInteger.ZERO))
{

fs.add(two);
n = n.divide(two);

}

if (n.compareTo(BigInteger.ONE) > 0)
{

BigInteger f = BigInteger.valueOf(3);
while (f.multiply(f).compareTo(n) <= 0)
{

if (n.mod(f).equals(BigInteger.ZERO))
{

fs.add(f);
n = n.divide(f);

}
else
{

f = f.add(two);
}

}
fs.add(n);

}

return fs;
}

To a programmer not accustomed to object-oriented pro-
gramming, it is annoying that the add method is overloaded,
with the same method name referring to the addition of two
BigIntegers when used as f.add(two) and to the insertion
of an item in a LinkedList when used as fs.add(f). Such
usage may not be confusing to the compiler, because it keeps
track of the types of all variables, but it can be confusing to
the programmer who writes and reads the code and has to
make sense of it.

The strong pseudoprime test in the isSpsp function com-
putes d and s in the first while loop, checks for an early ter-
mination in the if, then counts down s in the second while
loop. Note that the early termination test is different in the
Java version than the Haskell version; the Haskell version
separates the early termination test from the n−1 tests, but
the Java version combines the early termination test with
the first loop of the n − 1 tests, then pre-decrements s be-
fore starting the second while loop. Both versions of the
function get the right answer, so the choice is based on the
convenience of the programmer.

16 Programming with

private static Boolean isSpsp(BigInteger n, BigInteger a)
{

BigInteger two = BigInteger.valueOf(2);
BigInteger n1 = n.subtract(BigInteger.ONE);
BigInteger d = n1;
int s = 0;

while (d.mod(two).equals(BigInteger.ZERO))
{

d = d.divide(two);
s += 1;

}

BigInteger t = a.modPow(d, n);

if (t.equals(BigInteger.ONE) || t.equals(n1))
{

return true;
}

while (--s > 0)
{

t = t.multiply(t).mod(n);
if (t.equals(n1))
{

return true;
}

}

return false;
}

After using a predefined list of bases in the Haskell version
of the function, we’re back to using random bases in the
isPrime function. The two if tests check the input domain
and exit quickly if the input is even, then the while loop
performs 25 strong pseudoprime tests.

public static Boolean isPrime(BigInteger n)
{

Random r = new Random();
BigInteger two = BigInteger.valueOf(2);
BigInteger n3 = n.subtract(BigInteger.valueOf(3));
BigInteger a;
int k = 25;

if (n.compareTo(two) < 0)
{

return false;
}

if (n.mod(two).equals(BigInteger.ZERO))
{

return n.equals(two);
}

while (k > 0)
{

a = new BigInteger(n.bitLength(), r).add(two);
while (a.compareTo(n) >= 0)
{

a = new BigInteger(n.bitLength(), r).add(two);
}

if (! isSpsp(n, a))
{

return false;
}

k -= 1;
}

return true;
}

Note that Java’s BigInteger library includes a function
isProbablePrime that performs this computation in exactly
the same way.

The rhoFactor function races the tortoise and hare un-
til the gcd is greater than 1, then the if-else chain either

returns a prime factor or retries the factorization with a dif-
ferent random function.

private static BigInteger rhoFactor(BigInteger n, BigInteger c)
{

BigInteger t = BigInteger.valueOf(2);
BigInteger h = BigInteger.valueOf(2);
BigInteger d = BigInteger.ONE;

while (d.equals(BigInteger.ONE))
{

t = t.multiply(t).add(c).mod(n);
h = h.multiply(h).add(c).mod(n);
h = h.multiply(h).add(c).mod(n);
d = t.subtract(h).gcd(n);

}

if (d.equals(n)) /* cycle */
{

return rhoFactor(n, c.add(BigInteger.ONE));
}
else if (isPrime(d)) /* success */
{

return d;
}
else /* found composite factor */
{

return rhoFactor(d, c.add(BigInteger.ONE));
}

}

The rhoFactors function first validates its input, then
extracts factors of 2 in the first while, and, unless the input
is a power of 2, calls rhoFactor repeatedly in the second
while until the remaining cofactor is prime, sorting the list
of factors before returning it. The built-in isProbablePrime
function is called rather than the one we defined above.

public static LinkedList rhoFactors(BigInteger n)
{

BigInteger f;
BigInteger two = BigInteger.valueOf(2);
LinkedList fs = new LinkedList();

if (n.compareTo(two) < 0)
{

return fs;
}

while (n.mod(two).equals(BigInteger.ZERO))
{

n = n.divide(two);
fs.add(two);

}

if (n.equals(BigInteger.ONE))
{

return fs;
}

while (! n.isProbablePrime(25))
{

f = rhoFactor(n, BigInteger.ONE);
n = n.divide(f);
fs.add(f);

}

fs.add(n);
Collections.sort(fs);
return fs;

}

To show examples of the use of these functions, we have
to create a complete program with all of its imports and a
class declaration. The program shown below is decidedly
simple-minded, sufficient only to show a few examples; you
will surely want to arrange the class differently in your own
programs. For sake of brevity, the function bodies are elided
below.

Prime Numbers 17

import java.util.LinkedList;
import java.util.BitSet;
import java.util.Random;
import java.util.Collections;
import java.math.BigInteger;
import java.lang.Exception;
import java.lang.Boolean;

class Main {

public static LinkedList sieve(int n) { ... }
public static LinkedList primes(int n) { ... }
public static Boolean tdPrime(BigInteger n) { ... }
public static LinkedList tdFactors(BigInteger n) { ... }
private static Boolean isSpsp(BigInteger n, BigInteger a) { ... }
public static Boolean isPrime(BigInteger n) { ... }
private static BigInteger rhoFactor(BigInteger n, BigInteger c) { ... }
public static LinkedList rhoFactors(BigInteger n) { ... }

public static void main (String[] args)
{

System.out.println(sieve(100));
System.out.println(primes(100));
System.out.println(primes(1000000).size());
System.out.println(tdPrime(new BigInteger("600851475143")));
System.out.println(tdFactors(new BigInteger("600851475143")));
System.out.println(isPrime(new BigInteger("600851475143")));
System.out.println(isPrime(new BigInteger("2305843009213693951")));
System.out.println(rhoFactors(new BigInteger("600851475143")));

}

}

Output from the program is the same as all the other im-
plementations.

Appendix: Python

Python is a commonly-used scripting language with a rep-
utation of being easy to read, write and learn, a mixed
imperative/object-oriented flavor, and a large library, both
standard and user-contributed. We’ll take the opportunity
with Python to extend the domain of integer factorization be-
yond the integers greater than 1 that mathematicians gener-
ally consider. Specifically, in the rho factors function we’ll
consider -1, 0 and 1 to be prime, so they factor as themselves,
and we’ll factor negative numbers by adding -1 to the list of
factors of the corresponding positive number. This isn’t en-
tirely correct, but it isn’t entirely incorrect, either, and is
actually useful in some cases. And we’re in good company;
Wolfram|Alpha calculates factors the same way we do.

We begin, as we did with Haskell, with a one-liner (folded
here onto three lines to make it fit the narrow column, but
with Python’s offside rule about code indenting, it must all
be presented to the interpreter on a single line) that purports
to be the Sieve of Eratosthenes:

print [x for x in range(2,100)
if not [y for y in range(2, int(x**0.5)+1)

if x%y == 0]]

That prints the primes less than a hundred. But the ex-
pression if x%y == 0 at the end gives the game away: it’s
really trial division (the % operator for modulo), so it’s not
a sieve. In fact, it is very slow as n grows large, about
O(n2/2(logen)2. Don’t be fooled by cute one-liners!

The ancient Sieve of Eratosthenes consists of two for-
loops, the first over the integers 2 to n and the second over
the multiples of the current prime. The bitarray b has n+ 1

elements, but b[0] and b[1] are never accessed; it’s eas-
ier to add two extra bits than to map between two different
representations of the same thing.

def sieve(n):
b, p, ps = [True] * (n+1), 2, []
for p in xrange(2, n+1):

if b[p]:
ps.append(p)
for i in xrange(p, n+1, p):

b[i] = False
return ps

Next is the optimized Sieve of Eratosthenes. After val-
idating the input, the first while loop collects the sieving
primes and performs the sieving, and the second while loop
collects the remaining primes that survived the sieve. Note
that append adds an element after the target, unlike the C
function that inserts an element before the target.

def primes(n):
if type(n) != int and type(n) != long:

raise TypeError(’must be integer’)
if n < 2:

raise ValueError(’must be greater than one’)
m = (n-1) // 2
b = [True] * m
i, p, ps = 0, 3, [2]
while p*p < n:

if b[i]:
ps.append(p)
j = 2*i*i + 6*i + 3
while j < m:

b[j] = False
j = j + 2*i + 3

i += 1; p += 2
while i < m:

if b[i]:
ps.append(p)

i += 1; p += 2
return ps

The next function, td prime, has three possible return val-
ues: PRIME, COMPOSITE, and UNKNOWN when the limit is ex-
ceeded. We use True and False for PRIME and COMPOSITE,
and raise an OverflowError exception if the limit is ex-
ceeded, requiring some effort for the user to trap the error
and respond accordingly. After validating the input, the if
checks even numbers and the while loop checks odd num-
bers. Python’s optional-argument syntax is simple and con-
venient; the argument limit is optional, and is given a de-
fault value if not specified.

def td_prime(n, limit=1000000):
if type(n) != int and type(n) != long:

raise TypeError(’must be integer’)
if n % 2 == 0:

return n == 2
d = 3
while d * d <= n:

if limit < d:
raise OverflowError(’limit exceeded’)

if n % d == 0:
return False

d += 2
return True

The td factors function has the same problem with the
limit argument as td prime, and we solve it the same way,
raising an OverflowError exception if the limit is exceeded.
The if becomes a while on the factors of 2, and the function
collects factors in a list instead of returning as soon as it finds
the first factor, but otherwise td factors is very similar to
td prime.

18 Programming with

def td_factors(n, limit=1000000):
if type(n) != int and type(n) != long:

raise TypeError(’must be integer’)
fs = []
while n % 2 == 0:

fs += [2]
n /= 2

if n == 1:
return fs

f = 3
while f * f <= n:

if limit < f:
raise OverflowError(’limit exceeded’)

if n % f == 0:
fs += [f]
n /= f

else:
f += 2

return fs + [n]

The Miller-Rabin primality checker makes use of Python’s
ability to nest functions to hide the strong pseudoprime
checker inside the is prime function. It also uses the
built-in modular exponentiation function; with two argu-
ments, pow(b,e) computes be, but with three arguments,
pow(b,e,m) computes be (mod m). Python offers random
numbers, but we prefer to test a fixed set of bases.

def is_prime(n):
if type(n) != int and type(n) != long:

raise TypeError(’must be integer’)
if n < 2:

return False
ps = [2,3,5,7,11,13,17,19,23,29,31,37,41,

43,47,53,59,61,67,71,73,79,83,89,97]
def is_spsp(n, a):

d, s = n-1, 0
while d%2 == 0:

d /= 2; s += 1
t = pow(a,d,n)
if t == 1:

return True
while s > 0:

if t == n-1:
return True

t = (t*t) % n
s -= 1

return False
if n in ps: return True
for p in ps:

if not is_spsp(n,p):
return False

return True

Like is prime, the rho factors function reduces names-
pace pollution by hiding local functions; notice the lambda,
which is an alternate way of creating a local function. Again,
as with Java, the + function is overloaded for both addition
and list construction. The code is similar to Java, even if it
looks quite different.

def rho_factors(n, limit=1000000):
if type(n) != int and type(n) != long:

raise TypeError(’must be integer’)
def gcd(a,b):

while b: a, b = b, a%b
return abs(a)

def rho_factor(n, c, limit):
f = lambda(x): (x*x+c) % n
t, h, d = 2, 2, 1
while d == 1:

if limit == 0:
raise OverflowError(’limit exceeded’)

t = f(t); h = f(f(h)); d = gcd(t-h, n)
if d == n:

return rho_factor(n, c+1, limit)
if is_prime(d):

return d
return rho_factor(d, c+1, limit)

if -1 <= n <= 1: return [n]
if n < -1: return [-1] + rho_factors(-n, limit)
fs = []
while n % 2 == 0:

n = n // 2; fs = fs + [2]
if n == 1: return fs
while not is_prime(n):

f = rho_factor(n, 1, limit)
n = n / f
fs = fs + [f]

return sorted(fs + [n])

We could import the gcd function from the fractions li-
brary, but instead we implement it ourselves because it gives
us the chance to discuss this famous algorithm. Donald E.
Knuth, in Volume 2, Section 4.5.2 of his book The Art of
Computer Programming, calls this the “granddaddy” of all
algorithms because it is the oldest nontrivial algorithm that
has survived to the present day. The algorithm is commonly
called the Euclidean algorithm because it was described in
Book VII, Propositions 1 and 2 of Euclid’s Elements, but
scholars believe the algorithm dates to about two hundred
years before Euclid, sometime around 500 B.C. Knuth gives
the entire history of the algorithm, and an extensive anal-
ysis of its time complexity, which is well worth your time.
Euclid’s version of the algorithm worked by repeatedly sub-
tracting the smaller amount from the larger until they are
the same; the modern version of the algorithm replaces sub-
traction with division (the modulo operator).

Here are some sample calls to the functions defined above;
the answers are the same as all the other implementations.

print primes(100)
print len(primes(1000000))
print td_prime(600851475143)
print td_factors(600851475143)
print is_prime(600851475143)
print is_prime(2305843009213693951)
print rho_factors(600851475143)

Appendix: Scheme

Scheme is primarily an academic language, useful for ex-
pressing algorithms in imperative, functional, and message-
passing styles, with a fully-parenthesized prefix syntax de-
rived from Lisp. Scheme provides big integers natively, and
also lists, but has no bit arrays, so our implementation of
the ancient Sieve of Eratosthenes uses a vector of booleans,
which uses eight bits per element instead of one but works
perfectly well.

(define (sieve n)
(let ((bits (make-vector (+ n 1) #t)))

(let loop ((p 2) (ps ’()))
(cond ((< n p) (reverse ps))

((vector-ref bits p)
(do ((i (+ p p) (+ i p))) ((< n i))

(vector-set! bits i #f))
(loop (+ p 1) (cons p ps)))

(else (loop (+ p 1) ps))))))

Let’s take a moment for a quick lesson in Scheme. An
expression like (let ((var1 value1) ...) body) estab-
lishes a local binding for each of several var/value pairs that
is active in the body of the let; a let* expression is the
same, except that the bindings are executed left-to-right, and
each binding is available to those that follow.

Prime Numbers 19

Scheme has two looping constructs. The named-let
variant of let, given by (let name ((var1 value1) ...)
body), is like let, but additionally binds name to a func-
tion with arguments vark whose code is the body of the let,
which executes loop when it is called recursively; by con-
vention, the variable name is often called loop, but it is
sometimes convenient to use other names.

The other looping construct is do, which is similar to the
for of C. The form of the do loop is (do ((var1 value1
next1) ...) (done? ret-value) body ...). Each
var/value/next triplet specifies a variable name, a value for
the variable when the do is initialized, and an expression
evaluated at each step of the do; there may be multiple
var/value/next triplets, in which case each is executed si-
multaneously, rather like a comma operator in a C for state-
ment. The done? predicate terminates the do loop when it
becomes true; this is the opposite of a C for loop, which ter-
minates when the condition becomes false. The return value
is optional; if it is not given, the return value of the do loop
is unspecified. The statements in the body of the do loop
are optional, and are evaluated only for their side effects.

Scheme also provides two conditional constructs. The first
is (if cond then else), which first evaluates the condition
then evaluates one of the two succeeding clauses; like Haskell,
an if is an expression, not a control-flow statement, but
unlike Haskell, the else may be omitted, in which case the
value of the if expression is undefined if the condition is
false. Cond is similar to a nested set of if statements; each
clause consists of a condition and body, the conditions are
read in order until one is true, when the corresponding body
is evaluated as the value of the cond.

Now that we know something about Scheme, we look at
the optimized version of the Sieve of Eratosthenes:

(define (primes n)
(if (or (not (integer? n)) (< n 2))

(error ’primes "must be integer greater than one")
(let* ((len (quotient (- n 1) 2))

(bits (make-vector len #t)))
(let loop ((i 0) (p 3) (ps (list 2)))

(cond ((< n (* p p))
(do ((i i (+ i 1)) (p p (+ p 2))

(ps ps (if (vector-ref bits i) (cons p ps) ps)))
((= i len) (reverse ps))))

((vector-ref bits i)
(do ((j (+ (* 2 i i) (* 6 i) 3) (+ j p)))

((<= len j) (loop (+ i 1) (+ p 2) (cons p ps)))
(vector-set! bits j #f)))

(else (loop (+ i 1) (+ p 2) ps)))))))

In the example above, len is the length of the bitarray,
called m in the description of the algorithm, and bits is the
bitarray itself, a vector of booleans. The cond has three
clauses. The first clause is actually the termination clause
of Step 5 and Step 6 that is executed last; the body-less do
sweeps up the primes after sieving is complete, and the return
value is the list of primes, which must be reversed because
each newly-found prime is pushed to the front, not the back,
of the accumulating list of primes. The second clause sifts
each prime, as in Step 4; this do has a body, which clears
the jth element of the bitarray, and the return value is an
expression that calls the named-let recursively to advance

to the next sieving prime. The else clause recurs when p is
not prime.

Our td-prime? function follows the Scheme convention
that predicates (functions that return a boolean) have names
that end in a question mark. An error is signaled if limit is
less than the smallest prime factor of n; this isn’t as conve-
nient as raising an exception in Python, because standard
Scheme has no way to trap the error, but most implementa-
tions provide some kind of error trapping.

(define (td-prime? n . args)
(if (or (not (integer? n)) (< n 2))

(error ’td-prime? "must be integer greater than one")
(let ((limit (if (pair? args) (car args) 1000000)))

(if (even? n) (= n 2)
(let loop ((d 3))

(cond ((< limit d)
(error ’td-prime? "limit exceeded"))

((< n (* d d)) #t)
((zero? (modulo n d)) #f)
(else (loop (+ d 2)))))))))

Td-factors is similar to td-prime?, except that the first
if becomes a loop, on twos, and both loops collect the factors
that they find instead of stopping on the first factor. Here
is a case where the names twos and odds in the named-let
provide documentation of the nature of the loop, making the
function clearer to the reader.

(define (td-factors n . args)
(if (or (not (integer? n)) (< n 2))

(error ’td-factors "must be integer greater than one")
(let ((limit (if (pair? args) (car args) 1000000)))

(let twos ((n n) (fs ’()))
(if (even? n)

(twos (/ n 2) (cons 2 fs))
(let odds ((n n) (d 3) (fs fs))

(cond ((< limit d)
(error ’td-factors "limit exceeded"))

((< n (* d d))
(reverse (cons n fs)))

((zero? (modulo n d))
(odds (/ n d) d (cons d fs)))

(else (odds n (+ d 2) fs)))))))))

We’ve been using lists but haven’t mentioned how they
work. A list is either null or is a pair with an item in its
car and another list in its cdr; the terms car and cdr are
pre-historic. An item x is inserted at the front of a list xs by
(cons x xs); the word cons is short for construct. Predi-
cates (null? xs) and (pair? xs) distinguish empty lists
from non-empty ones. The null list is represented as ’(),
and the order of items in a list is reversed by (reverse xs).

The function prime? that implements the Miller-Rabin
primality checker illustrates two more features of Scheme.
We have been introducing functions with the notation
(define (name args ...) body), but the alternate nota-
tion is (define name (lambda (args ...) body)). We
use it here because we want variable seed to persist from
one invocation of prime? to the next. Since the let is in-
side the define but outside the lambda, the variable bound
by the let retains its value from one call of the function
to the next, just like static variables in some programming
languages. Thus, prime? is a closure, not just a function,
because it encloses the seed variable. And while we’re talking
about define, even though it doesn’t apply here, we have
been using the dot-notation for some of our argument lists;

20 Programming with

a construct like (define (f args rest) body)
provides a variable-arity argument list, with all arguments
after the dot collected into a list rest.

The other Scheme feature is internal-define, which is
used to provide local functions that don’t pollute the global
namespace. We define three local functions, rand that re-
turns random numbers, expm that performs modular expo-
nentiation (the name is a variant of expt that Scheme pro-
vides for the normal powering function) and spsp? that
checks if a is a witness to the compositeness of n. And we’re
not done; the internal definition expm has its own internal
definition times for modular multiplication. An internal-
define must appear immediately after another define, a
lambda, or a let.

(define prime?
(let ((seed 3141592654))

(lambda (n)
(define (rand)

(set! seed (modulo (+ (* 69069 seed) 1234567) 4294967296))
(+ (quotient (* seed (- n 2)) 4294967296) 2))

(define (expm b e m)
(define (times x y) (modulo (* x y) m))
(let loop ((b b) (e e) (r 1))

(if (zero? e) r
(loop (times b b) (quotient e 2)

(if (odd? e) (times b r) r)))))
(define (spsp? n a)

(do ((d (- n 1) (/ d 2)) (s 0 (+ s 1)))
((odd? d)

(let ((t (expm a d n)))
(if (or (= t 1) (= t (- n 1))) #t

(do ((s (- s 1) (- s 1))
(t (expm t 2 n) (expm t 2 n)))

((or (zero? s) (= t (- n 1)))
(positive? s))))))))

(if (not (integer? n))
(error ’prime? "must be integer")
(if (< n 2) #f

(do ((a (rand) (rand)) (k 25 (- k 1)))
((or (zero? k) (not (spsp? n a)))

(zero? k))))))))

In the prime? function we define our own random num-
ber generator, since standard Scheme doesn’t provide one;
the static variable seed maintains the current state of the
random number generator, which is of a type known as a
linear-congruential generator. The multiplier 69069 is due
to Knuth. Note that the seed is reset with each call to rand;
the witness a is set to the range 1 to n, exclusive.

There are three do loops in the function. The first, the
outer do in spsp?, binds two variables, d and s, and iterates
until d is odd, performing Step 2 of Algorithm 4.A. The inner
do in spsp? binds the two variables s and t and implements
the loop of Step 4 and Step 5 of Algorithm 3.A, performing
the modular squaring and terminating when s is zero or t is
n−1. The result of the do-loop is computed by the predicate
(positive? s), which is #t if t ≡ n− 1 (mod n) and #f
when s reaches 0 without finding t ≡ n − 1 (mod n). The
do in the main body of the function uses the same idiom
of having two terminating conditions and using the finishing
predicate to differentiate the two.

Our final function implements integer factorization by Pol-
lard’s rho algorithm. The two internal definitions are cons<,
which inserts an item into a list in ascending order instead of
at the front, and rho, which implements the rho algorithm.
The cons< function turns a vice into a virtue; since standard

Scheme lacks a sort function, we insert the factors in order
as we find them, instead of writing a sort function to sort
them at the end, which gives the virtue of simpler code and
is probably faster, given the short length of most lists of fac-
tors. The body of the function does error checking, extracts
factors of 2, and assembles the complete factorization.

(define (rho-factors n . args)
(define (cons< x xs)

(cond ((null? xs) (list x))
((< x (car xs)) (cons x xs))
(else (cons (car xs) (cons< x (cdr xs))))))

(define (rho n limit)
(let loop ((t 2) (h 2) (d 1) (c 1) (limit limit))

(define (f x) (modulo (+ (* x x) c) n))
(cond ((zero? limit) (error ’rho-factors "limit exceeded"))

((= d 1) (let ((t (f t)) (h (f (f h))))
(loop t h (gcd (- t h) n) c (- limit 1))))

((= d n) (loop 2 2 1 (+ c 1) (- limit 1)))
((prime? d) d)
(else (rho d (- limit 1))))))

(if (not (integer? n))
(error ’rho-factors "must be integer")
(let ((limit (if (pair? args) (car args) 1000)))

(cond ((<= -1 n 1) (list n))
((negative? n) (cons -1 (rho-factors (- n) limit)))
((even? n)

(if (= n 2) (list 2)
(cons 2 (rho-factors (/ n 2) limit))))

(else (let loop ((n n) (fs ’()))
(if (prime? n)

(cons< n fs)
(let ((f (rho n limit)))

(loop (/ n f) (cons< f fs))))))))))

Here are some examples:

> (sieve 100)
(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
79 83 89 97)

> (primes 100)
(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
79 83 89 97)

> (length (primes 1000000))
78498
> (td-prime? 600851475143)
#f
> (td-factors 600851475143)
(71 839 1471 6857)
> (prime? 600851475143)
#f
> (prime? 2305843009213693951)
#t
> (rho-factors 600851475143)
(71 839 1471 6857)

As your reward for reading this far, we give two additional
functions related to prime numbers: the segmented Sieve of
Eratosthenes and a fast variant of Pollard’s rho algorithm.

The basic idea of a segmented sieve is to choose the sieving
primes less than the square root of n, choose a reasonably
large segment size that nevertheless fits in memory, and then
sieve each of the segments in turn, starting with the small-
est. At the first segment, the smallest multiple of each sieving
prime that is within the segment is calculated, then multiples
of the sieving prime are marked as composite in the normal
way; when all the sieving primes have been used, the remain-
ing unmarked numbers in the segment are prime. Then, for
the next segment, for each sieving prime you already know
the first multiple in the current segment (it was the multiple
that ended the sieving for that prime in the prior segment),
so you sieve on each sieving prime, and so on until you are
finished with all the segments.

Prime Numbers 21

As an example, we compute the primes from 100 to 200;
we choose a segment size of 20, and the sieving primes are
3, 5, 7, 11 and 13. The first segment has the ten values
{101 103 105 107 109 111 113 115 117 119}. The smallest
multiple of 3 in the segment is 105, so strike 105 and each
third number after: 111, 117. The smallest multiple of 5 in
the segment is 105, so strike 105 and the fifth number after:
115. The smallest multiple of 7 in the segment is 105, so
strike 105 and the seventh number after: 119. There is no
multiple of 11 in the segment, so there is nothing to do. The
smallest multiple of 13 in the segment is 117, so strike it.
The numbers that are left {101 103 107 109 113} are prime.
When resetting for the second segment {121 123 125 127 129
131 133 135 137 139} the smallest multiples of each sieving
prime are 123, 125, 133, 121 and 143 (beyond the segment),
which can all be calculated by counting the next multiple of
the sieving prime after the end of the first segment.

Our function seg-sieve produces a list of primes from lo
to hi ; we assume that lo >

√
hi, and to keep things simple

we also assume that both lo and hi are even. Variable ps is
the list of sieving primes, initialized by the normal sieve, and
qs is the offset of the smallest multiple of the corresponding
sieving prime in the current segment. The segment size b is√
hi, bs is the bitarray, zs is the output list of primes, and z

is a function that adds a new prime to the list.

(define (seg-sieve lo hi)
(let* ((r (inexact->exact (ceiling (sqrt hi))))

(b (quotient r 2)) (bs (make-vector b #t))
(ps (cdr (primes r)))
(qs (map (lambda (p)

(modulo (* -1/2 (+ lo 1 p)) p)) ps))
(zs (list)) (z (lambda (p) (set! zs (cons p zs)))))

(do ((t lo (+ t b b))
(qs qs (map (lambda (p q) (modulo (- q b) p))

ps qs)))
((<= hi t) (reverse zs))

(when (< hi (+ t b b)) (set! b (quotient (- hi t) 2)))
(do ((i 0 (+ i 1))) ((= i b)) (vector-set! bs i #t))
(do ((ps ps (cdr ps)) (qs qs (cdr qs))) ((null? qs))

(do ((j (car qs) (+ j (car ps)))) ((<= b j))
(vector-set! bs j #f)))

(do ((j 0 (+ j 1))) ((= j b))
(if (vector-ref bs j) (z (+ t j j 1)))))))

The outer do iterates over the segments; the qs are initial-
ized by mapping the smallest multiple of the sieving prime
onto the bitarray that holds the segment and are reset from
one segment to the next by adding the segment size modulo
the sieving prime. The when resets the top of the segment
the last time through when only a partial segment remains.
The first inner do resets the bitarray, the second inner do
sieves each prime, its inner do strikes the multiples, and the
final do sweeps up the primes. Here’s an example:

> (apply + (seg-sieve 1000000 2000000))
105363426899

For the fast variant of Pollard’s rho algorithm, we make
two changes to the basic version. The first change is al-
gorithmic: we replace Floyd’s turtle-and-hare cycle-finding
algorithm, which Pollard used in his original version of the
rho algorithm, with Brent’s powers-of-two cycle-finding al-
gorithm. Each time the step-counter i is a power of two,
the value of xi is saved; if a subsequent j = xi is found

before j = 2i, a cycle has been identified. Brent’s cycle-
finding algorithm requires only one modular multiplication
per step, instead of the three modular multiplications re-
quired by Floyd’s cycle-finding algorithm, so even though
Brent’s method typically requires more steps that Floyd’s
method, in practice the number of modular multiplications
is generally about a quarter less than Floyd’s method, giving
a welcome speed-up to Pollard’s factoring algorithm.

For instance, consider the cyclical sequence 1, 2, 3, 4, 5,
6, 3, 4, 5, 6, Initially j = 1, xj = 1, q = 2j = 2 and
the saved x = 1. Then j = 2, xj = 2, q is reset to 4 and the
saved x is reset to 2. Then j = 3, then j = 4, and q is reset
to 8 and the saved x is reset to 4. This continues until j = 8
and xj = 4, which equals the saved x, identifying the cycle.

The second change is code-tuning: we replace the gcd at
each step with a gcd that is calculated only periodically, per-
forming instead a modular multiplication at each step, which
is much faster than a gcd calculation. This is done by taking
the product of all the |xi+1 − xi| modulo n for several steps,
then taking a gcd of the product at the end. If the gcd is 1,
then all the intermediate gcd calculations were also 1. If the
gcd is prime, it is a factor of n. If the gcd is composite (in-
cluding the case where the gcd is equal to n) it is necessary to
retreat to the saved value of x from the prior gcd calculation
and proceed step-by-step through the gcd calculations. The
number of steps between successive gcd calculations varies
with the size of n (bigger n means less frequent gcd calcu-
lations) and the number of trial divisions performed before
starting the rho algorithm (more trial divisions means less
frequent gcd calculations); values between 10 and 250 may
be appropriate depending on the circumstances.
(define (brent n c limit)

(define (f y) (modulo (+ (* y y) c) n))
(define (g p x y) (modulo (* p (abs (- x y))) n))
(let loop1 ((x 2) (y (+ 4 c)) (z (+ 4 c)) (j 1) (q 2) (p 1))

(if (= j limit) (error ’brent "timeout")
(if (= x y) (brent n (+ c 1) (- limit j)) ; cycle

(if (= j q) (let ((t (f y)))
(loop1 y (f y) z (+ j 1) (* q 2) (g p y t)))
(if (positive? (modulo j 25))

(loop1 x (f y) z (+ j 1) q (g p x y))
(let ((d (gcd p n)))

(if (= d 1) (loop1 x (f y) y (+ j 1) q (g p x y))
(if (< 1 d n) d ; factor

(let loop2 ((k 1) (z (f z)))
(if (= k 25) (brent n (+ c 1) (- limit j))

(let ((d (gcd (- z x) n)))
(if (= d 1) (loop2 (+ k 1) (f z))

(if (= d n) (brent n (+ c 1) (- limit j))
d))))))))))))))

Our function keeps three values of the random-number se-
quence: x is the running value, y is the value at the last gcd
calculation, and z is the value at the last power of two. The
main loop also defines j as the step counter, q as the next
power of two, and p as the current product for the short-
circuit gcd calculation. Function f delivers the next value
in the random-number sequence and function g accumulates
the product of the differences between successive values of
the sequence for the short-circuit gcd calculation. Loop1 is
the main body of the function, and loop2 reruns the short-
circuit gcd calculation when necessary; both call the function
recursively if they find a cycle. We arbitrarily choose 25 as
the number of steps between successive gcd calculations.

