
Text File Databases

Contents

1 Input file readers 1
1.1 Fixed-length data fields 2
1.2 Character-delimited fields 2
1.3 Comma-separated values 2
1.4 Name-value data 2

2 The filter-port input combinator 3

3 Processing the input file 3
3.1 For-each-port 3
3.2 Map-port . 3
3.3 Fold-port . 3
3.4 Map-reduce-port 3

4 Writing text-file database records 4
4.1 Fixed-length data fields 4
4.2 Character-delimited fields 4
4.3 Comma-separated values 4
4.4 Name-value data 4

5 Utility functions 4
5.1 Read-chars 4
5.2 Read-line . 4
5.3 Quote-csv . 4
5.4 String-trim 4
5.5 Lpad . 5
5.6 A-cons and a-sort 5

6 Examples 5

7 Testing 6

Copyright c© 2013 by Programming Praxis of Saint Louis, Missouri, USA. All rights
reserved. This document is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License; to view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter re-
questing a copy of the license to Creative Commons, 171 Second Street, Suite 300,
San Francisco, California, 94105, USA. The code described in this document may be
used under the GNU General Public License 3; to view a copy of this license, visit
http://www.gnu.org/licenses/gpl-3.0.txt or send a letter requesting a copy of the license
to Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, Massachusetts,
02110, USA. The code presented in this document has been included for its instructional
value. It has been tested with care but is not guaranteed for any particular purpose.
The author does not offer any warranties or representations, nor does he accept any
liabilities with respect to the code. “Programming Praxis” and the “sharpen your saw”
logo are trademarks of Programming Praxis of Saint Louis, Missouri, USA. You can
find this essay on the internet at http://programmingpraxis.com/essays, or contact the
author at programmingpraxis@gmail.com. Published on January 10, 2013.

Appendices 7
Source code . 7
Test code . 11

Many practical application programs read plain-ascii text
files consisting of records separated by newlines, each record
consisting of multiple fields. Sometimes each record is pro-
cessed individually, so that the output is a one-to-one map-
ping of the input; in other cases, the input is summarized.
This essay describes functions that standardize handling of
input records in several formats, guide the processing of those
records, and assist in output.

1 Input file readers

Although input files come in a variety of formats, a large
number of those formats can be processed with just a few
general-purpose readers. Each call to a reader fetches the
next record from the input; as a side effect of the fetch, the
port is repositioned to the next record. All the readers take
an optional port as the final argument, which defaults to the
current input port if no port is specified. The return value
from the reader is a list of strings, one string per field; empty
strings indicate null fields, and an empty record returns ’().
Explicit white space in the input record is preserved. The
reader returns the eof-object when the port is exhausted.
Defaults are used if any arguments are invalid.

Because different systems have different conventions for
the end-of-line marker, all the readers accept a variety of
end-of-line markers, so that they work properly regardless of
where the input file was created; the end-of-line marker may
be a carriage return (#\return), a line feed (#\newline),
or both characters in either order. All the readers also per-
mit the end-of-record marker (a single end-of-line marker for
most of the readers, or two successive end-of-line markers
for the case where records are written one-field-per-line) to
be either a separator or a terminator; in particular, the last
record in a file may, but need not, end with an end-of-record
marker. On operating systems where a CTRL-Z character
(ascii \032) indicates end-of-file, any trailing input is trun-
cated.

2 Text File

1.1 Fixed-length data fields

One common input file format has records with fields
in fixed positions. These records can be read with
(read-fixed-record size defs . port), where size is
the length of the record, including any line-terminator char-
acters, and defs is a list of two-element lists with the field’s
starting position (inclusive) in the first element and the
field’s ending position (exclusive) in the second element,
counting from zero as in substring. Since the format is
fixed-length, each of the strings will always be the same
length for each record, including leading or trailing white
space.

Sometimes, a file containing fixed-length records has a
fixed-length header. In that case, a header of length n can
be discarded by calling (read-chars n . port).

1.2 Character-delimited fields

Another common input file format has lines containing
records with variable-length fields separated by a single-
character delimiter. These records can be read with the
read-delim-record function, which takes two optional ar-
guments. If the first argument is a character, it is taken as
the field separator. Fields consist of maximal sequences of
non-delimiter characters, and there is no escape; each in-
stance of the delimiter indicates a new field. An example
of a character-delimited file is the unix password file, where
colons separate fields.

In the special case where the delimiter is a newline or car-
riage return, fields are taken to be the lines of a file, and
records are separated by blank lines (two successive end-of-
line markers).

In the special case where no delimiter is specified, all white
space (spaces and horizontal tabs, at least, and possibly other
characters depending on the implementation and character
set) is treated as a field separator, and multiple instances of
white space characters are treated as a single field separator.
Thus, a record that consists of the string ABC, followed by
five spaces, followed by the string DEF, followed by an end-
of-line marker, would be treated as a record containing two
fields, the strings ABC and DEF, neither field containing white
space. A record with leading or trailing white space implies
null fields at the beginning or end of the record, respectively;
this means that a record consisting solely of white space is
taken as containing two null fields. The no-delimiter case is
different than the case where the delimiter is a space char-
acter, in which each space marks a new field and multiple
successive spaces indicate successive null fields.

1.3 Comma-separated values

A particular type of variable-length delimited input file is
known as comma-separated values, or csv, which originated
in database and spreadsheet applications. Unfortunately,
there is no standard definition of the comma-separated values
format, and there are several kinky character sequences that
admit multiple reasonable interpretations. The basic schema

of the csv format provides records terminated by end-of-line
markers with fields separated by commas; in European coun-
tries where the comma, rather than the period, is used as the
decimal point, fields are separated by semi-colons. To allow
the field-separator character to appear in the data, a field
may be quoted by surrounding it with double-quote marks,
so that a field-separator character appearing within a quoted
field loses its meaning as a field separator and becomes a reg-
ular character; a literal double-quote character may appear
within a quoted field by doubling it, so that two double-quote
characters appear in succession. Leading and trailing white
space within fields is preserved. Read-csv-record permits
end-of-line markers to be embedded within quoted fields; this
convention differs from those csv parsers that treat quoted
end-of-line markers as the end of the record, thus preventing
a missing quote from sucking up all remaining input.

The read-csv-record function takes two optional argu-
ments. If the first argument is a character, it is taken as the
field separator; if no field separator is given, it defaults to a
comma.

Read-csv-record is implemented using a state machine
consisting of mutually-recursive functions. Each function
calls another function in tail position, so the recursive calls
consume no stack space.

1.4 Name-value data

Another frequently-used type of text-file database has self-
identifying fields, where records consist of multiple fields,
one field per line, separated by blank lines (two successive
end-of-line markers) and each field consists of a name and
a value separated by a delimiter. This format is often used
for databases that have many optional fields, such as bib-
liographic databases where books have publishers, journals
have volume-and-issue references, and there may be multiple
authors. In some cases the fields may be sorted in alphabetic
order by name, in order to create a canonical representation.
In other cases, the order of the fields may be important; for
instance, in a bibliographic database, each author may be
followed by an associated institution or email-address field.

The read-name-value-record function takes two op-
tional arguments. If the first argument is a character, it is
taken as the separator between name and value; otherwise,
the first maximal run of white-space characters on the line is
taken as the separator between name and value. Note that
only the first separator on each line is special; subsequent
separators are simply part of the value. The function re-
turns the next input record on the port, or the eof-object
when the port is exhausted. The record is returned as an
association list with the name in the key field and the asso-
ciated value in the value field of each association, with fields
in the order they appeared in the input. Fields may be ex-
tracted from the record by the normal a-list functions assoc,
assq, and assv.

Databases 3

2 The filter-port input combinator

Sometimes, input records must be filtered, so that only some
of the records participate in the processing while others
are excluded. Function (filter-port reader pred?) is
a combinator that takes a reader and a predicate and re-
turns a new reader that only passes those records for which
the predicate is not #f; the predicate is a function that takes
an input record and returns a boolean or other value acting
as a boolean.

Speaking generally, input combinators are often useful
when dealing with text-file databases, though they tend to
be application-specific rather than general-case, as with the
filter combinator. For instance, it is easy to write an in-
put combinator that trims non-significant whitespace from
a field, or an input combinator that maps all instances of a
particular code in a particular field to a different value. The
main value of the combinator is separation of function—it
transforms the input data so the main program doesn’t have
to.

3 Processing the input file

Several higher-order functions encode familiar idioms that
process the text file databases read by the functions given
above. In all cases, if the reader function requires para-
meters, they must be curried into the definition of the func-
tion.

3.1 For-each-port

Procedure (for-each-port reader proc . port) per-
forms a procedure for its side-effects, applying proc to each
input record in turn until the port is exhausted. It returns
nothing.

3.2 Map-port

Function (map-port reader mapper . port) creates a
list from the records on a port, applying the mapper func-
tion to each input record in turn, continuing until the port is
exhausted, and returning the mapped records in a list with
one item per input record in the same order as the input.

3.3 Fold-port

Function (fold-port reader folder base . port)
summarizes the records on a port to a single value. Reader
specifies the function that reads input records, and port is
the location of the input records. Folder is a function that
takes a value and an input record and returns a new value.
When the first record is read, folder is called as (folder
base record), where record is the first record, and returns
a value. As each subsequent record is read, folder is called
again, with the accumulating value from the prior record
in place of the base value for the first record, as (folder

accum record). When the input is exhausted, fold-port
returns the final value.

3.4 Map-reduce-port

Another way to summarize a text-file data-base uses the
map-reduce paradigm introduced by Jeffrey Dean and Sanjay
Ghemawat of Google in their paper MapReduce: Simplified
Data Processing on Large Clusters presented at the Sixth
Symposium on Operating System Design and Implementa-
tion in San Francisco in December 2004 (available at labs.-
google.com/papers/mapreduce.html). Users specify a read
function that fetches records from an input port, a map func-
tion that extracts a key/value pair from the input record,
and a reduce function that merges all intermediate values
associated with the same intermediate key.

Function (map-reduce-port reader mapper reducer
lt? . port) has type:

(port→ α) × reader
(α→ (values β γ)) × mapper
((β × γ × γ)→ γ) × reducer
((β × β)→ boolean) × lt?
port→ input

list (cons β γ) result

(reader port) is a function that takes a port and re-
turns a list of strings which are the fields of the next in-
put record; if the reader requires parameters, they must be
curried into the reader. (mapper item) is a function that
extracts the key and value from an input record; it takes
a record and returns (values key value). (reducer key
value1 value2) is a function that combines two intermedi-
ate key/value pairs with identical keys into a single value; it
takes a key, an existing value and a new value and returns a
new value. (lt? key1 key2) is a function that takes two
keys and returns #t if the first key is less than the second
and #f otherwise. The return value of map-reduce-port is
a list of pairs whose car is a key and whose cdr is a value,
with keys ordered by the lt? predicate.

The map-reduce-port function reads a port, submitting
each input record to the mapping function, then submitting
the key/value pair returned by the mapping function to a
dictionary that either inserts the key/value pair, if the key
isn’t in the dictionary, or uses the reducing function to com-
bine the new value with the value currently associated with
the key if the key already exists in the dictionary. Once the
input port is exhausted, the key/value pairs are retrieved
from the dictionary and inserted into the output in order.

The dictionary is implemented using red/black trees stolen
from section 3.3 of Chris Okasaki’s book Purely Functional
Data Structures; those interested in the details of the trees’
operation should refer to the book. Two functions are
provided: (insert tree key value) and (enlist tree
base). The insert function recursively winds down the
red/black tree until it finds the proper place for the key. If
the key doesn’t exist, a new node is added to the tree using

4 Text File

the current key/value combination, and balancing rotations
and re-colorings are performed as the stacked function calls
unwind. However, if the key already exists, the reducing
function is called, passing the key, the current value, and the
new value as arguments, and the result replaces the value
currently in the tree. The enlist function performs in-order
traversal of the tree, building the list right-to-left so that it
is properly ordered when the function completes.

4 Writing text-file database records

Writers are provided for all the same text-file database types
for which readers are provided. In all cases, the output of a
writer may be read by the corresponding reader. The first
argument to each writer is a record represented as a list of
fields of type string; some of the writers take additional argu-
ments, and all take an optional port as their last argument,
which defaults to the current output port if no port is speci-
fied. All the writers are procedures and return no value. All
the writers use (newline) to write the end-of-line marker, so
the actual end-of-line marker may vary depending on the im-
plementation (on some systems, (newline) may write more
than one character), and all the writers write the end-of-line
marker as a record terminator, not a record separator, so the
last record in a file will always be followed by an end-of-line
marker. Defaults are used if any arguments are invalid.

4.1 Fixed-length data fields

Text-file databases with fixed-length data fields are writ-
ten by procedure (write-fixed-record rec size defs .
port), where size is the length of the output record (in
characters) and defs defines the field positions in the same
manner as read-fixed-record. The defs need not spec-
ify the contents of each character position within the output
record; unspecified character positions are filled with blanks
(#\space). All fields are left-justified within the allocated
space.

4.2 Character-delimited fields

Text-file databases with character-delimited fields are writ-
ten by procedure write-delim-record, which takes one re-
quired argument and two optional arguments. The first ar-
gument is the output record represented as a list of fields. If
the second argument is a character, it is taken to be the de-
limiter, and is written to the output between fields; a missing
delimiter is taken to be a single blank. Write-delim-record
writes records with fields terminated by end-of-line markers
and records separated by a blank line if the delimiter is a
carriage-return or linefeed.

4.3 Comma-separated values

Text-file databases in comma-separated values format are
written by procedure write-csv-record, which takes one
required argument and two optional arguments. The first

argument is the output record represented as a list of fields.
If the second argument is a character, it is taken to be the
delimiter between fields; if no delimiter is given, it defaults to
a comma. Write-csv-record is conservative, quoting only
those fields that contain an instance of the delimiter, double-
quote, or end-of-line marker.

4.4 Name-value data

Text-file databases with name-value fields are written by
write-name-value-record, which takes one required argu-
ment and two optional arguments. Unlike the other writers,
the first argument is the output record represented as an as-
sociation list of name/value pairs. If the second argument is
a character, it is taken to be the delimiter between name and
value; if no delimiter is given, it defaults to a single blank.

5 Utility functions

A variety of utility functions are provided, which may find
use in some programs involving text-file databases.

5.1 Read-chars

Function (read-chars n . port) returns a string contain-
ing up to n characters from the named port or the current
input port, or the eof-object at end of file. Read-chars
is called by read-fixed-record. All strings returned by
read-char will be of length n characters, except possibly
the last string at the end of the file, which will be of less
than length n if n characters do not remain on the file.

5.2 Read-line

Function (read-line . port) returns the next line from
the named input port or the current input port, or the
eof-object at the end of file. As with the other readers
the end of a line is marked by a carriage-return, a line-
feed, or the combination of both characters in either or-
der, and the last line need not have an end-of-line marker.
Read-delim-record calls read-line when the delimiter is
the end-of-line marker.

5.3 Quote-csv

The csv writer takes care of quoting strings as they are
written, but sometimes it is convenient for a programmer
to quote strings directly. Function (quote-csv delim str)
returns str with the appropriate quotations. Quote-csv is
called by write-csv-record.

5.4 String-trim

When reading fixed-length text files, functions that trim
leading and trailing spaces from strings may be useful.
Functions (string-trim-left str), (string-trim-right
str), and (string-trim str) are provided in the Ap-
pendix.

Databases 5

5.5 Lpad

The (lpad str size . pad) function right-justifies str in
a string of size characters by adding pad characters to the
left of str; if pad is missing, it defaults to a blank.
Lpad is useful for right-justifying strings when writing

fixed-format records, because write-fixed-record always
left-justifies strings.

5.6 A-cons and a-sort

Since the name-value functions use association lists, it is con-
venient to have some functions that work on association lists.
The a-cons function is useful when building an association
list, inserting a new key/value pair at the head of an associ-
ation list.

When processing name-value files, it is sometimes useful
to sort the fields by name, thus giving records a canonical
representation. Function a-sort uses insertion sort to return
a new association list with the car of each item ordered by
the lt? predicate.

6 Examples

Several examples show how to exploit the functions given
above; all read the emp.data file shown below, with four
space-separated fields representing employee name, hourly
wage rate, hours worked, and department:

Beth 12.75 0 mfg
Dan 8.50 10 sales
Kathy 11.40 30 sales
Mark 12.75 40 mfg
Mary 7.50 20 mfg
Susie 10.30 25 acctg

Function wages calculates weekly wages:

(define (wages emp)
(* (string->number (cadr emp))

(string->number (caddr emp))))

The first example shows a simple calculation on each
record in the file:

(with-input-from-file "emp.data"
(lambda ()

(map-port
read-delim-record
(lambda (emp)

(list (car emp) (wages emp))))))

Output from this command is the weekly wages for each
employee:

(("Beth" 0)
("Dan" 85)
("Kathy" 342)
("Mark" 510)
("Mary" 150)
("Susie" 257.5))

The same output can be produced using fold-port:

(reverse
(with-input-from-file "emp.data"

(lambda ()
(fold-port

read-delim-record
(lambda (base emp)

(cons
(list (car emp) (wages emp))
base))

’()))))

The second example shows how records can be processed
selectively:

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
(filter-port

read-delim-record
(lambda (emp)

(string=? (cadddr emp) "sales")))
(lambda (emp)

(display (car emp))
(display #\tab)
(display (wages emp))
(newline)))))

Output from this command is the weekly wages for employees
in the sales department:

Dan 85.00
Kathy 342.00

The third example shows the calculation of total weekly
wages using the fold-port function:

(with-input-from-file "emp.data"
(lambda ()

(fold-port
read-delim-record
(lambda (base emp)

(+ base (wages emp)))
0)))

Output from this command is 1344.5.
The fourth example shows how data can be summarized

by department:

(with-input-from-file "emp.data"
(lambda ()

(map-reduce-port
read-delim-record
(lambda (emp)

(values (cadddr emp) (wages emp)))
(lambda (k v1 v2) (+ v1 v2))
string<?)))

Output from this command is total wages by department,
sorted on department name:

(("acctg" . 257.5)
("mfg" . 660)
("sales" . 427))

The fifth example shows the use of read-fixed-record
and produces the same output as the previous example.
It assumes a modified emp.data with 22-byte fixed-length
records terminated by CR/LF and a modified wages that calls
string-trim on its arguments. Note that the parameters to
the reader function are curried (a quasi-quote introduces the
second argument to apply):

6 Text File

(with-input-from-file "emp.data"
(lambda ()

(map-reduce-port
(lambda (port)

(apply read-fixed-record ‘(22
((0 5) (6 11) (12 14) (15 20))
,port)))

(lambda (emp)
(values

(string-trim (cadddr emp))
(wages emp)))

(lambda (k v1 v2) (+ v1 v2))
string<?)))

It is somewhat harder to process name-value records than
the other record types, because fields are referenced by
name rather than position. For instance, consider the fol-
lowing version of the emp.data file, stored in the string
emp-data-tab, shown folded into three columns to conserve
space:

name Beth name Kathy name Mary
rate 12.75 rate 11.40 rate 7.50
hrs 0 hrs 30 hrs 20
dept mfg dept sales dept mfg

name Dan name Mark name Susie
rate 8.5 rate 12.75 rate 10.30
hrs 10 hrs 40 hrs 25
dept sales dept mfg dept acctg

The sixth example shows the calculation of total weekly
wages using the fold-port function with a name-value
record:

(let ((in (open-input-string emp-data-tab)))
(fold-port

(lambda (port)
(read-name-value-record port))

(lambda (base emp)
(+ base

(* (string->number
(cdr (assoc "rate" emp)))

(string->number
(cdr (assoc "hrs" emp))))))

0
in))

Output from this calculation is 1344.5.
The seventh and final example adds a wages field and con-

verts emp.data to comma-separated values format:

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-csv-record
(append emp

(list
(number->string

(wages emp)))))))))

Output from this example is:

Beth,12.75,0,mfg,0
Dan,8.50,10,sales,85
Kathy,11.40,30,sales,342
Mark,12.75,40,mfg,510
Mary,7.50,20,mfg,150
Susie,10.30,25,acctg,257.5

7 Testing

Testing of the readers and writers was done by perform-
ing round-trips through corresponding write/read functions.
To illustrate, testing of character-delimited databases was
done by writing emp.data to a string port using a pipe-
character as a delimiter, then reading it back and calculat-
ing total wages using fold-port. Here’s the code to convert
emp.data to a pipe-delimited string, stored in the string vari-
able emp-data-pipe:

(define emp-data-pipe
(let ((out (open-output-string)))

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-delim-record
emp #\| out)))))

(get-output-string out)))

Given the emp-data-pipe string, the following code calcu-
lates total weekly wages using the fold-port function, with
a reader that handles pipe-delimited records, and compares
it to the expected value, returning #t for success and #f if
the calculated amount is in error:

(= 1344.5
(let ((in (open-input-string emp-data-pipe)))

(fold-port
(lambda (port)

(read-delim-record #\| port))
(lambda (base emp)

(+ base (wages emp)))
0
in)))

Similar tests were conducted for the following
reader/writer combinations: fixed, pipe-delimited, newline-
delimited, null-delimited, csv, and tab-delimited name-value.
The filter combinator and the various processing functions
and procedures were tested using the example code shown
above.

Databases 7

Appendix: Source code
; READ-CHARS N [PORT]
(define (read-chars n . port)

(let ((p (if (null? port) (current-input-port) (car port))))
(if (eof-object? (peek-char p))

(peek-char p)
(let loop ((n n) (c (peek-char p)) (s ’()))

(cond ((and (eof-object? c) (pair? s)) (list->string (reverse s)))
((eof-object? c) c)
((zero? n) (list->string (reverse s)))
(else (let ((c (read-char p)))

(loop (sub1 n) (peek-char p) (cons c s)))))))))

; READ-LINE [PORT]
(define (read-line . port)

(define (eat p c)
(if (and (not (eof-object? (peek-char p)))

(char=? (peek-char p) c))
(read-char p)))

(let ((p (if (null? port) (current-input-port) (car port))))
(let loop ((c (read-char p)) (line ’()))

(cond ((eof-object? c) (if (null? line) c (list->string (reverse line))))
((char=? #\newline c) (eat p #\return) (list->string (reverse line)))
((char=? #\return c) (eat p #\newline) (list->string (reverse line)))
(else (loop (read-char p) (cons c line)))))))

; READ-FIXED-RECORD SIZE DEF-LIST [PORT]
(define (read-fixed-record size defs . port)

(let ((p (if (null? port) (current-input-port) (car port))))
(let ((fix-rec (read-chars size p)))

(if (eof-object? fix-rec)
fix-rec
(let loop ((defs defs) (result ’()))

(if (null? defs)
(reverse result)
(loop (cdr defs)

(cons (substring fix-rec (caar defs) (cadar defs)) result))))))))

; READ-DELIM-RECORD [DELIM] [PORT]
(define (read-delim-record . args)

(define (eat p c)
(if (and (not (eof-object? (peek-char p)))

(char=? (peek-char p) c))
(read-char p)))

(define (read-delim delim port)
(cond ((eof-object? (peek-char port)) (peek-char port))

((and delim (or (char=? delim #\return) (char=? delim #\newline)))
(let loop ((f (read-line port)) (fields ’()))

(if (or (eof-object? f) (string=? f ""))
(reverse fields)
(loop (read-line port) (cons f fields)))))

(else
(let loop ((c (read-char port)) (field ’()) (fields ’()))

(cond ((eof-object? c) (reverse (cons (list->string (reverse field)) fields)))
((char=? #\return) (eat port #\newline)

(reverse (cons (list->string (reverse field)) fields)))
((char=? #\newline c) (eat port #\return)

(reverse (cons (list->string (reverse field)) fields)))
((and delim (char=? delim c))

(loop (read-char port) ’() (cons (list->string (reverse field)) fields)))
((char-whitespace? c)

(if (char-whitespace? (peek-char port))
(loop (read-char port) field fields)
(loop (read-char port) ’()

(cons (list->string (reverse field)) fields))))
(else (loop (read-char port) (cons c field) fields)))))))

(cond ((null? args) (read-delim #f (current-input-port)))
((and (null? (cdr args)) (char? (car args)))

(read-delim (car args) (current-input-port)))
((and (null? (cdr args)) (port? (car args)))

(read-delim #f (car args)))
((and (pair? (cdr args)) (null? (cddr args)) (char? (car args)) (port? (cadr args)))

(read-delim (car args) (cadr args)))
(else (read-delim #f (current-input-port)))))

8 Text File

; READ-CSV-RECORD [DELIM] [PORT]
(define (read-csv-record . args)

(define (read-csv delim port)
(define (add-field field fields)

(cons (list->string (reverse field)) fields))
(define (start field fields)

(let ((c (read-char port)))
(cond ((eof-object? c) (reverse fields))

((char=? #\return c) (carriage-return field fields))
((char=? #\newline c) (line-feed field fields))
((char=? #\" c) (quoted-field field fields))
((char=? delim c) (not-field ’() (add-field field fields)))
(else (unquoted-field (cons c field) fields)))))

(define (not-field field fields)
(let ((c (read-char port)))

(cond ((eof-object? c) (cons "" fields))
((char=? #\return c) (carriage-return ’() (add-field field fields)))
((char=? #\newline c) (line-feed ’() (add-field field fields)))
((char=? #\" c) (quoted-field field fields))
((char=? delim c) (not-field ’() (add-field field fields)))
(else (unquoted-field (cons c field) fields)))))

(define (quoted-field field fields)
(let ((c (read-char port)))

(cond ((eof-object? c) (add-field field fields))
((char=? #\" c) (may-be-doubled-quotes field fields))
(else (quoted-field (cons c field) fields)))))

(define (may-be-doubled-quotes field fields)
(let ((c (read-char port)))

(cond ((eof-object? c) (add-field field fields))
((char=? #\return c) (carriage-return ’() (add-field field fields)))
((char=? #\newline c) (line-feed ’() (add-field field fields)))
((char=? #\" c) (quoted-field (cons #\" field) fields))
((char=? delim c) (not-field ’() (add-field field fields)))
(else (unquoted-field (cons c field) fields)))))

(define (unquoted-field field fields)
(let ((c (read-char port)))

(cond ((eof-object? c) (add-field field fields))
((char=? #\return c) (carriage-return ’() (add-field field fields)))
((char=? #\newline c) (line-feed ’() (add-field field fields)))
((char=? delim c) (not-field ’() (add-field field fields)))
(else (unquoted-field (cons c field) fields)))))

(define (carriage-return field fields)
(let ((c (peek-char port)))

(cond ((eof-object? c) fields)
((char=? #\newline c) (read-char port) fields)
(else fields))))

(define (line-feed field fields)
(let ((c (peek-char port)))

(cond ((eof-object? c) fields)
((char=? #\return c) (read-char port) fields)
(else fields))))

(if (eof-object? (peek-char port)) (peek-char port) (reverse (start ’() ’()))))
(cond ((null? args) (read-csv #\, (current-input-port)))

((and (null? (cdr args)) (char? (car args)))
(read-csv (car args) (current-input-port)))

((and (null? (cdr args)) (port? (car args)))
(read-csv #\, (car args)))

((and (pair? (cdr args)) (null? (cddr args)) (char? (car args)) (port? (cadr args)))
(read-csv (car args) (cadr args)))

(else (read-csv #\, (current-input-port)))))

Databases 9

; READ-NAME-VALUE-RECORD [DELIM] [PORT]
(define (read-name-value-record . args)

(define (eat p c)
(if (and (not (eof-object? (peek-char p)))

(char=? (peek-char p) c))
(read-char p)))

(define (read-name-value delim port)
(if (eof-object? (peek-char port))

(peek-char port)
(let loop ((c (read-char port)) (key ’()) (value ’()) (fields ’()))

(if (string? key)
(cond ((eof-object? c)

(reverse (cons (cons key (list->string (reverse value))) fields)))
((char=? #\return c) (eat port #\newline)

(loop (read-char port) ’() ’()
(cons (cons key (list->string (reverse value))) fields)))

((char=? #\newline c) (eat port #\return)
(loop (read-char port) ’() ’()

(cons (cons key (list->string (reverse value))) fields)))
(else (loop (read-char port) key (cons c value) fields)))

(cond ((eof-object? c)
(reverse (cons (cons (list->string (reverse key)) "") fields)))

((char=? #\return c) (eat port #\newline)
(reverse (cons (cons (list->string (reverse key)) "") fields)))

((char=? #\newline c) (eat port #\return)
(reverse (cons (cons (list->string (reverse key)) "") fields)))

((and delim (char=? delim c))
(loop (read-char port) (list->string (reverse key)) value fields))

((and (not delim) (char-whitespace? c))
(if (char-whitespace? (peek-char port))

(loop (read-char port) key value fields)
(loop (read-char port) (list->string (reverse key)) value fields)))

(else (loop (read-char port) (cons c key) value fields)))))))
(cond ((null? args) (read-name-value #f (current-input-port)))

((and (null? (cdr args)) (char? (car args)))
(read-name-value (car args) (current-input-port)))

((and (null? (cdr args)) (port? (car args)))
(read-name-value #f (car args)))

((and (pair? (cdr args)) (null? (cddr args)) (char? (car args)) (port? (cadr args)))
(read-name-value (car args) (cadr args)))

(else (read-name-value #f (current-input-port)))))

; FILTER-PORT READER PRED?
(define (filter-port reader pred?)

(lambda args
(let loop ((x (apply reader args)))

(cond ((eof-object? x) x)
((pred? x) x)
(else (loop (apply reader args)))))))

; FOR-EACH-PORT READER PROC [PORT]
(define (for-each-port reader proc . port)

(let ((p (if (null? port) (current-input-port) (car port))))
(let loop ((item (reader p)))

(if (not (eof-object? item))
(begin (proc item) (loop (reader p)))))))

; MAP-PORT READER MAPPER [PORT]
(define (map-port reader mapper . port)

(let ((p (if (null? port) (current-input-port) (car port))))
(let loop ((item (reader p)) (result ’()))

(if (eof-object? item)
(reverse result)
(loop (reader p) (cons (mapper item) result))))))

; FOLD-PORT READER FOLDER BASE [PORT]
(define (fold-port reader folder base . port)

(let ((p (if (null? port) (current-input-port) (car port))))
(let loop ((item (reader p)) (result base))

(if (eof-object? item)
result
(loop (reader p) (folder result item))))))

10 Text File

; MAP-REDUCE-PORT READER MAPPER REDUCER LT? [PORT]
(define (map-reduce-port reader mapper reducer lt? . port)

(define (tree c k v l r) (vector c k v l r))
(define empty (tree ’black ’nil ’nil ’nil ’nil))
(define (empty? t) (eqv? t empty))
(define (color t) (vector-ref t 0))
(define (key t) (vector-ref t 1))
(define (value t) (vector-ref t 2))
(define (lkid t) (vector-ref t 3))
(define (rkid t) (vector-ref t 4))
(define (red? c) (eqv? c ’red))
(define (black? c) (eqv? c ’black))
(define (balance c k v l r)

(cond ((and (black? c) (red? (color l)) (red? (color (lkid l))))
(tree ’red (key l) (value l)

(tree ’black (key (lkid l)) (value (lkid l))
(lkid (lkid l)) (rkid (lkid l)))

(tree ’black k v (rkid l) r)))
((and (black? c) (red? (color l)) (red? (color (rkid l))))

(tree ’red (key (rkid l)) (value (rkid l))
(tree ’black (key l) (value l) (lkid l) (lkid (rkid l)))
(tree ’black k v (rkid (rkid l)) r)))

((and (black? c) (red? (color r)) (red? (color (lkid r))))
(tree ’red (key (lkid r)) (value (lkid r))

(tree ’black k v l (lkid (lkid r)))
(tree ’black (key r) (value r) (rkid (lkid r)) (rkid r))))

((and (black? c) (red? (color r)) (red? (color (rkid r))))
(tree ’red (key r) (value r)

(tree ’black k v l (lkid r))
(tree ’black (key (rkid r)) (value (rkid r))

(lkid (rkid r)) (rkid (rkid r)))))
(else (tree c k v l r))))

(define (insert t k v)
(define (ins t)

(let ((tc (color t)) (tk (key t)) (tv (value t)) (tl (lkid t)) (tr (rkid t)))
(cond ((empty? t) (tree ’red k v empty empty))

((lt? k tk) (balance tc tk tv (ins tl) tr))
((lt? tk k) (balance tc tk tv tl (ins tr)))
(else (tree tc tk (reducer k tv v) tl tr)))))

(let* ((z (ins t)) (zk (key z)) (zv (value z)) (zl (lkid z)) (zr (rkid z)))
(tree ’black zk zv zl zr)))

(define (enlist t base)
(cond ((empty? t) base)

((and (empty? (lkid t)) (empty? (rkid t)))
(cons (cons (key t) (value t)) base))

(else (enlist (lkid t)
(cons (cons (key t) (value t))

(enlist (rkid t) base))))))
(let ((p (if (null? port) (current-input-port) (car port))))

(let loop ((item (reader p)) (t empty))
(if (eof-object? item)

(enlist t ’())
(call-with-values

(lambda () (mapper item))
(lambda (k v) (loop (reader p) (insert t k v))))))))

; QUOTE-CSV DELIM STR
(define (quote-csv delim str)

(define (string-find str pat)
(let loop ((i 0))

(cond ((<= (string-length str) i) #f)
((string=? (substring str i (+ i (string-length pat))) pat) i)
(else (loop (+ i 1))))))

(define (string-replace-all str pat repl)
(let ((len-str (string-length str))

(len-pat (string-length pat))
(spot (string-find str pat)))

(if spot
(string-append

(substring str 0 spot)
repl
(string-replace-all (substring str (+ spot len-pat) len-str) pat repl))

str)))
(let ((new-str (string-replace-all str "\" "\"\"")))

(if (or (string-find str (string delim))
(not (string=? str new-str))
(string-find str (string #\return))
(string-find str (string #\newline)))

(string-append ""̈ new-str ""̈)
str)))

Databases 11

; WRITE-FIXED-RECORD REC SIZE DEFS [PORT]
(define (write-fixed-record rec size defs . port)

(let ((p (if (null? port) (current-output-port) (car port)))
(out (make-string size #\space)))

(do ((rec rec (cdr rec))
(defs defs (cdr defs)))

((or (null? rec) (null? defs)) (display out p))
(do ((s 0 (+ s 1))

(t (caar defs) (+ t 1)))
((or (= s (string-length (car rec))) (= (cadar defs) t)))

(string-set! out t (string-ref (car rec) s))))))

; WRITE-DELIM-RECORD REC [DELIM] [PORT]
(define (write-delim-record rec . args)

(define (write-delim delim port)
(do ((rec rec (cdr rec)))

((null? rec) (newline port))
(display (car rec) port)
(if (pair? (cdr rec)) (display delim port)))

(if (or (char=? delim #\return) (char=? delim #\newline)) (newline port)))
(cond ((null? args) (write-delim #\space (current-output-port)))

((and (null? (cdr args)) (char? (car args)))
(write-delim (car args) (current-output-port)))

((and (null? (cdr args)) (port? (car args)))
(write-delim #\space (car args)))

((and (pair? (cdr args)) (null? (cddr args)) (char? (car args)) (port? (cadr args)))
(write-delim (car args) (cadr args)))

(else (write-delim #\space (current-output-port)))))

; WRITE-CSV-RECORD REC [DELIM] [PORT]
(define (write-csv-record rec . args)

(define (write-csv delim port)
(do ((rec rec (cdr rec)))

((null? rec) (newline port))
(display (quote-csv delim (car rec)) port)
(if (pair? (cdr rec)) (display delim port))))

(cond ((null? args) (write-csv #\, (current-output-port)))
((and (null? (cdr args)) (char? (car args)))

(write-csv (car args) (current-output-port)))
((and (null? (cdr args)) (port? (car args)))

(write-csv #\, (car args)))
((and (pair? (cdr args)) (null? (cddr args)) (char? (car args)) (port? (cadr args)))

(write-csv (car args) (cadr args)))
(else (write-csv #\, (current-output-port)))))

; WRITE-NAME-VALUE-RECORD REC [DELIM] [PORT]
(define (write-name-value-record rec . args)

(define (write-name-value delim port)
(do ((rec rec (cdr rec)))

((null? rec) (newline port))
(display (caar rec) port)
(display delim port)
(display (cdar rec) port)
(newline port)))

(cond ((null? args) (write-name-value #\space (current-output-port)))
((and (null? (cdr args)) (char? (car args)))

(write-name-value (car args) (current-output-port)))
((and (null? (cdr args)) (port? (car args)))

(write-name-value #\space (car args)))
((and (pair? (cdr args)) (null? (cddr args)) (char? (car args)) (port? (cadr args)))

(write-name-value (car args) (cadr args)))
(else (write-name-value #\space (current-output-port)))))

Appendix: Test code
(define (wages emp)

(* (string->number (cadr emp))
(string->number (caddr emp))))

(define (string-trim-left s)
(let ((c (string-ref s 0)))

(if (char-whitespace? c)
(string-trim-left

(substring s 1
(string-length s)))

s)))

(define (string-trim-right s)
(let* ((len (- (string-length s) 1))

(c (string-ref s len)))
(if (char-whitespace? c)

(string-trim-right
(substring s 0 len))

s)))

12 Text File

(define (string-trim s)
(string-trim-left (string-trim-right s)))

(define (a-cons key value a-list)
(cons (cons key value) a-list))

(define (a-sort lt? a-list)
(define (foldl op base lst)

(if (null? lst) base
(foldl op (op base (car lst)) (cdr lst))))

(define (insert lst x)
(cond ((null? lst) (list x))

((lt? (car x) (caar lst)) (cons x lst))
(else (cons (car lst) (insert (cdr lst) x)))))

(foldl insert ’() a-list))

(define emp-data-fixed
(let ((out (open-output-string)))

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-fixed-record emp 22
’((0 5) (6 11) (12 14) (15 20)) out)))))

(get-output-string out)))

(define emp-data-pipe
(let ((out (open-output-string)))

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-delim-record
emp #\| out)))))

(get-output-string out)))

(define emp-data-newline
(let ((out (open-output-string)))

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-delim-record
emp #\newline out)))))

(get-output-string out)))

(define emp-data-null
(let ((out (open-output-string)))

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-delim-record
emp out)))))

(get-output-string out)))

(define emp-data-csv
(let ((out (open-output-string)))

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-csv-record emp out)))))
(get-output-string out)))

(define emp-data-tab
(let ((out (open-output-string)))

(with-input-from-file "emp.data"
(lambda ()

(for-each-port
read-delim-record
(lambda (emp)

(write-name-value-record
(a-cons "name" (list-ref emp 0)
(a-cons "rate" (list-ref emp 1)
(a-cons "hrs" (list-ref emp 2)
(a-cons "dept" (list-ref emp 3) ’()))))
#\tab out)))))

(get-output-string out)))

Databases 13

(and ; should return #t

(= 1344.5
(let ((in (open-input-string emp-data-fixed)))

(fold-port
(lambda (port) (read-fixed-record 22 ’((0 5) (6 11) (12 14) (15 20)) port))
(lambda (base emp) (+ base (* (string->number (string-trim (list-ref emp 1)))

(string->number (string-trim (list-ref emp 2))))))
0
in)))

(= 1344.5
(let ((in (open-input-string emp-data-pipe)))

(fold-port
(lambda (port) (read-delim-record #\| port))
(lambda (base emp) (+ base (wages emp)))
0
in)))

(= 1344.5
(let ((in (open-input-string emp-data-newline)))

(fold-port
(lambda (port) (read-delim-record #\newline port))
(lambda (base emp) (+ base (wages emp)))
0
in)))

(= 1344.5
(let ((in (open-input-string emp-data-null)))

(fold-port
(lambda (port) (read-delim-record port))
(lambda (base emp) (+ base (wages emp)))
0
in)))

(= 1344.5
(let ((in (open-input-string emp-data-csv)))

(fold-port
(lambda (port) (read-csv-record port))
(lambda (base emp) (+ base (wages emp)))
0
in)))

(= 1344.5
(let ((in (open-input-string emp-data-tab)))

(fold-port
(lambda (port) (read-name-value-record #\tab port))
(lambda (base emp) (+ base (* (string->number (cdr (assoc "rate" emp)))

(string->number (cdr (assoc "hrs" emp))))))
0
in))))

