Flight Planning
January 19, 2010
We begin with some simple definitions from trigonometry. Rnd provides both rounding and a type conversion from inexact (real) arithmetic to exact (integer). Xmodulo is like the modulo function, but simpler. We also use the square function from the Standard Prelude:
(define pi 3.141592653589793)
(define (radian->degree r) (/ r pi 2/360))
(define (degree->radian d) (* d 2/360 pi))
(define (rnd x) (round (inexact->exact x)))
(define (xmodulo x y)
(cond
((<= 0 x y) x)
((< x 0) (xmodulo (+ x y) y))
((>= x y) (xmodulo (- x y) y))))
For the first method, navigate1 follows the definition exactly through a sequence of temporary variables:
(define (navigate1 d gt wn ws as)
(let*
((b (- gt wn -180))
(b-radians (degree->radian b))
(sin-b (sin b-radians))
(a (radian->degree (asin (/ (* sin-b ws) as))))
(th (xmodulo (+ gt a) 360))
(gs (+ (* as (cos (degree->radian (- th gt))))
(* ws (cos b-radians))))
(th (+ gt a))
(ft (/ d gs)))
(list
(rnd gs)
(rnd a)
(xmodulo (rnd th) 360)
(rnd (* 60 ft)))))
For the second method, det uses the cosine rule in the calculation of the ground speed, and a uses the inverse of the cosine rule to calculate the angle of correction between the ground track and the true heading:
(define (navigate2 d gt wn ws as)
(let*
((b (xmodulo (- gt wn -180) 360))
(cos-b (cos (degree->radian b)))
(wsqr (square ws))
(asqr (square as))
(det (+ (square (* ws cos-b)) (- wsqr) asqr))
(gs (+ (* ws cos-b) (sqrt det)))
(a (radian->degree (acos (/ (+ asqr (square gs) (- wsqr)) (* 2 gs as)))))
(a ((if (< b 180) + -) a))
(th (+ gt a))
(ft (/ d gs)))
(if (or (< det 0) (< gs 0)) ('error 'navigate "STRANGE" det gs))
(list
(rnd gs)
(rnd a)
(xmodulo (rnd th) 360)
(rnd (* 60 ft)))))
An example is given below:
> (navigate1 180 90 90 20 90)
(70 0 90 154)
> (navigate2 180 90 90 20 90)
(70 0 90 154)
You can run the program at http://programmingpraxis.codepad.org/yE35J5Pw.
[…] Praxis – Flight Planning By Remco Niemeijer In today’s Programming Praxis exercise we have to implement two algorithms for flight […]
My Haskell solution (see http://bonsaicode.wordpress.com/2010/01/19/programming-praxis-flight-planning/ for a version with comments):
import Data.Fixed toDeg, toRad :: Floating a => a -> a toDeg d = d * 180 / pi toRad d = d * pi / 180 navigate1 :: Float -> Float -> Float -> Float -> Float -> [Int] navigate1 d gt wn ws as = map round [gs, a, th, ft] where b = toRad $ gt - wn + 180 a = toDeg $ asin (ws * sin b / as) th = mod' (gt + a) 360 gs = (cos . toRad $ th - gt) * as + ws * cos b ft = d / gs * 60 navigate2 :: Float -> Float -> Float -> Float -> Float -> [Int] navigate2 d gt wn ws as = if det < 0 || gs < 0 then error "strange" else map round [gs, a, th, ft] where b = mod' (gt - wn + 180) 360 x = ws * cos (toRad b) det = x^2 - ws^2 + as^2 gs = x + sqrt det a = (if b < 180 then id else negate) . toDeg . acos $ (as^2 + gs^2 - ws^2) / (2 * gs * as) th = gt + a ft = d / gs * 60