Marriage Sort
August 20, 2010
Here is our version of marriage sort:
(define (msort! lt? vec) ; marriage sort
(define (v i) (vector-ref vec i))
(define (v! i x) (vector-set! vec i x))
(define (swap! i j) (let ((t (v i))) (v! i (v j)) (v! j t)))
(let* ((end (- (vector-length vec) 1))
(skip (if (positive? end) (isqrt end) -1)))
(while (<= 0 skip)
(let ((vbest 0) (i 1))
(while (< i skip)
(when (lt? (v vbest) (v i)) (set! vbest i))
(set! i (+ i 1)))
(while (< i end)
(if (lt? (v vbest) (v i))
(begin (swap! i end) (set! end (- end 1)))
(set! i (+ i 1))))
(swap! vbest end)
(set! end (- end 1))
(set! skip (if (positive? end) (isqrt end) -1)))))
(isort! lt? vec))
The outer while controls the recursive sweeps, the first of the inner whiles finds the largest value in the sample, and the second of the inner whiles moves large values to the end of the array; the final swap! moves the largest sample value just before the new end. The three pointers are named skip, end and i; vbest points to the largest value in the sample. Here is isort:
(define (isort! lt? vec) ; insertion sort
(define (v i) (vector-ref vec i))
(define (v! i x) (vector-set! vec i x))
(define (swap! i j) (let ((t (v i))) (v! i (v j)) (v! j t)))
(let ((n (vector-length vec)))
(do ((i 0 (+ i 1))) ((= i n))
(do ((j i (- j 1)))
((or (<= j 0) (< (v (- j 1)) (v j))))
(swap! (- j 1) j)))))
We used isqrt, when and while from the Standard Prelude. You can run the program at http://programmingpraxis.codepad.org/4Sldvq9Q. You might also enjoy a solution in Factor by John Benediktsson, who sometimes posts his solutions here at Programming Praxis, and from whom this post was stolen.
Here’s a ruby version translated straight from the pseudo-code with “last” substituting for “end”. I took the insertion_sort straight from the wikipedia pseudo-code.
class Array def swap(i, j) self[i], self[j] = self[j], self[i] end def marriage_sort! last = self.length while true skip = Math.sqrt(last).to_i - 1 break if skip <= 0 # Pick the best element in the first vN - 1: best_pos = 0; i = 1 while i < skip best_pos = i if self[i] > self[best_pos] i += 1 end # Now pull out elements >= self[bestPos], and move to the end: i = skip while i < last if self[i] >= self[best_pos] self.swap(i, last-1) last -= 1 else i += 1 end end # Finally, move our best pivot element to the end self.swap(best_pos, last-1) last-=1 end # Finish off with insertion sort to put the elements into true sorted order self.insertion_sort! end def insertion_sort! self.each_index do |i| v = self[i] j = i-1 done = false begin if self[j] > v self[j+1] = self[j] j = j-1 done = true if j < 0 else done = true end end while done == false self[j+1] = v end self end end a = [5, 7, 8, 10, 3, 2, 9, 4, 6, 1] p a.marriage_sort!My C++ solution:
#include <iostream> #include <algorithm> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std; void insertion_sort (int *begin, int *end) { int *itr = begin+1; while (itr < end) { int save = *itr; int *current = itr; while (current > begin) { if (save < *(current-1)) *current = *(current-1); else break; --current; } *current = save; ++itr; } } void marriage_sort (int *begin, int *end) { int *oend = end; int *skip = begin + (size_t)sqrt (end - begin); if (skip <= begin) return; int *maxi = max_element (begin, skip); while (skip < end) { if (*skip > *maxi) swap (*skip, *--end); ++skip; } swap (*maxi, *--oend); insertion_sort (begin, end); } int main(int argc, char *argv[]) { srand (time (NULL)); const size_t SIZE = 16; int array[SIZE]; generate (array, array+SIZE, []() { return rand()%40; }); for_each (array, array+SIZE, [](int n) { cout << n << " "; }); cout << endl; insertion_sort (array, array+SIZE); for_each (array, array+SIZE, [](int n) { cout << n << " "; }); return 0; }oops, insertion_sort (array, array+SIZE); should be marriage_sort (array, array+SIZE);
I wrote a Factor version:
http://re-factor.blogspot.com/2010/08/marriage-sort.html