Word Breaks
August 12, 2011
The obvious solution uses recursive backtracking to pick off a prefix of the input that is in the dictionary, then recur on the remainder of the string, stopping when the entire input string is in the dictionary:
(define (segments str) ; exponential
(if (member str dict) str
(let ((len (string-length str)))
(let loop ((i 1))
(if (= i len) ""
(let ((prefix (substring str 0 i)))
(if (not (member prefix dict)) (loop (+ i 1))
(let ((suffix (segments (substring str i len))))
(if (string=? suffix "") (loop (+ i 1))
(string-append prefix " " suffix))))))))))
That has exponential time complexity, but memoizing the function reduces the time complexity to quadratic:
(define cache (make-hash string-hash string=? #f 97))
(define (segments str) ; quadratic
(if (member str dict) str
(if (cache 'lookup str) (cache 'lookup str)
(let ((len (string-length str)))
(let loop ((i 1))
(if (= i len) ""
(let ((prefix (substring str 0 i)))
(if (not (member prefix dict)) (loop (+ i 1))
(let ((suffix (segments (substring str i len))))
(if (string=? suffix "") (loop (+ i 1))
(let ((output (string-append prefix " " suffix)))
(cache 'insert str output) output))))))))))))
Here are some examples:
> (define dict '("a" "aa" "aaa" "ab" "apple"
"apricot" "is" "pie" "test" "this"))
> (segments "applepie")
"apple pie"
> (segments "thisisatest")
"this is a test"
> (segments "aaab")
"a a ab"
We used hash tables from the Standard Prelude. You can run the program at http://programmingpraxis.codepad.org/6fUMlr92.
A solution in Scheme. Nice!
My straightforward (and naïve) solutions in both Racket and Python:
#lang racket (define dictionary (set "a" "brown" "apple" "pie")) (define (in-prefixes str) (define (pos->element i) (values (substring str 0 (+ 1 i)) (substring str (+ 1 i)))) (define (next-pos i) (+ i 1)) (define initial-position 0) (define (contains-index? i) (< i (string-length str))) (define (contains-value? prefix rest) #t) (define (contains-index-and-value? i prefix rest) #t) (make-do-sequence (lambda () (values pos->element next-pos initial-position contains-index? contains-value? contains-index-and-value?)))) (define (string-empty? str) (zero? (string-length str))) (define (word-break dictionary word) (for/first (((prefix remaining) (in-prefixes word)) #:when (set-member? dictionary prefix) (rest (in-value (if (string-empty? remaining) '() (word-break dictionary remaining)))) #:when rest) (cons prefix rest)))#! /usr/bin/env python DICTIONARY = {'a', 'apple', 'pie', 'brown'} def word_break(dictionary, word): def break_string(s): return [] if s == '' else word_break(dictionary, s) for split_point in range(len(word) + 1): prefix = word[:split_point] if prefix in dictionary: rest = break_string(word[split_point:]) if rest is not None: return [prefix] + restA Python solution:
#!/usr/bin/env python def segments(s, d): segs = [] while s: if s in d: segs.append(s) s = "" for i in xrange(1, len(s)): if s[:i] in d: segs.append(s[:i]) s = s[i:] break if i == len(s) - 1: # already tested full string s s = "" return " ".join(segs) if __name__ == "__main__": d = set(["a", "aa", "aaa", "ab", "apple", "apricot", "is", "pie", "test", "this"]) print segments("thisisatest", d) print segments("aaab", d)Not pretty, to be sure, but it seems to get the job done.
Another Python solution.
I looked at a histogram of word length for the dictionary. In order of decreasing frequency, the word lengths are [8, 7, 9, 6, …]. gen_split() tries to split off a prefix of the input string using the word lengths in order of decreasing frequency.
gen_split() generates different splits of the input string. split() returns just the first one.
from collections import Counter from itertools import chain, count with open("12dicts/5desk.txt", "rt") as f: words = {line.strip() for line in f} # word lengths in order of decreasing frequency lengths = [t[0] for t in Counter(map(len, words)).most_common()] def gen_split(string, dictionary): if string: for n in lengths: if n > len(string): continue if string[:n] in dictionary: for rest in gen_split(string[n:], dictionary): yield [string[:n]] + rest else: yield [] def split(string, dictionary): words = next(gen_split(string, dictionary), None) return ' '.join(words) if words else None # testing from random import sample for n in range(2,7): test = ''.join(sample(words, n)) print('split("{}") ->\n\t"{}"\n'.format(test, split(test, words))) # sample output #split("cobbleddruggist") -> # "cobbled druggist" # #split("phospholipidoasisdeterment") -> # "phospholipid oasis determent" # #split("remuneratorunmelodiouspancreaticnonviable") -> # "remunerator unmelodious pancreatic nonviable" # #split("sweatinesssignatorycampsitereflowerpapaw") -> # "sweatiness signatory campsite reflower papaw" # #split("awestruckmonasticismBarclayshamKampalapressured") -> # "awestruck monastic ism Barclay sham Kampala pressure d"My clojure solution
Sorry, let’s try this again.
My clojure solution
Maybe this will be better:
Consider a procedure, (for-each-partition proc s word?), that walks
proc over all partitions of the given string s into words recognized
by the given predicate, word?, like this:
> (for-each-partition write "frukosten" word?) ("frukosten")("fru" "kosten")("fru" "ko" "sten")>The problem statement asks for joining the parts into a single string;
that would be easy to do. The example uses this dictionary predicate:
(define (word? s) (member s '("fru" "kost" "kosten" "frukost" "ost" "frukosten" "ko" "sten")))Then an escape procedure can be used to receive the first solution
found by for-each-partition, or #f if there are none, as follows:
> (call-with-current-continuation (lambda (k) (for-each-partition k "frukosten" word?) #f)) ("frukosten")It is now possible to add conditions. For example, the first partition
into three words:
> (call-with-current-continuation (lambda (k) (for-each-partition (lambda (p) (if (= 3 (length p)) (k p))) "frukosten" word?) #f)) ("fru" "ko" "sten")(The indentations look all wrong to me after cut-and-paste and I see no
revied button. Let us see.)
Ok, the indentations look right in the published version, within the
sourcode brackets. Below is an implementation of for-each-partition.
It works on an agenda of reversed position sequences, so that the
first index in an agenda task is a position where the next word needs
to be found. It memoizes the end positions of the recognized words at
those start positions where it needs to find more ways forward.
(define (for-each-partition proc s word?) (let* ((n (string-length s)) (memory (make-vector n #f)) (agenda '((0)))) (let do-agenda () (if (and (pair? agenda) (positive? n)) (let* ((task (car agenda)) (b (car task))) (set! agenda (cdr agenda)) (if (not (vector-ref memory b)) (vector-set! memory b (do ((e (+ b 1) (+ e 1)) (es '() (if (word? (substring s b e)) (cons e es) es))) ((> e n) es)))) (for-each (lambda (e) (let ((next (cons e task))) (if (= e n) (proc (substrings s (reverse next))) (set! agenda (cons next agenda))))) (vector-ref memory b)) (do-agenda)))))) (define (substrings s ix) (map (lambda (b e) (substring s b e)) (reverse (cdr (reverse ix))) (cdr ix)))(I have no idea what happened to the indentation of line 17 above. It
is right in my editor window. There are tabs, but there are tabs on
many other lines that did not break.)
Here are my Clojure and Ruby solutions: http://benmabey.com/2011/08/14/word-break-in-clojure-and-ruby-and-laziness-in-ruby.html
static void Main(string[] args)
{
string[] lookupTable = { “apple”, “Bat”, “Candle”, “Donkey”, “Eat”, “Sat” };
string str = string.Empty;
Console.WriteLine(“Please enter a string”);
str = Console.ReadLine();
string strToSearch = string.Empty;
for (int i = 0; i < str.Length; i++)
{
if (' ' == str[i])
continue;
else
{
strToSearch += str[i];
for (int j = 0; j < lookupTable.Length; j++)
{
if (strToSearch.ToUpper() == lookupTable[j].ToUpper())
{
int pos = str.IndexOf(strToSearch) + strToSearch.Length;
str = str.Insert(pos, " ");
strToSearch = string.Empty;
}
}
}
}
Console.WriteLine(str);
}
This is my C# Code
string[] dic = { “a”, “brown” ,”apple”, “pie”};
string input = “abrownapplepie”;
StringBuilder sb = new StringBuilder();
Regex[] regexes = dic.Select(c => new Regex(c)).ToArray();
foreach (var reg in regexes)
{
sb.Append(reg.Match(input).Value + ” “);
}
Console.WriteLine(sb.ToString().Trim());
My 2 cents, in Perl.
In this implementation, I try to find the longest prefix in the input that exists in the dictionary, and then do a recursive call for the rest of the input.
In order to test it, and just for fun, I built myself a small dictionary file (using the 187 most used words in the english dictionary), taken from here:
http://www.manythings.org/vocabulary/lists/l/
And I tested it like this:
And here’s the source:
#!/usr/bin/perl -w use strict; use warnings; my ($string, $dictionary_path) = @ARGV; # Read the dictionary my $dictionary = {}; open my $dfh, "<", $dictionary_path or die "Could not open '$dictionary_path' for reading: $!"; while(<$dfh>) { chomp; $dictionary->{lc($_)} = 1 } close $dfh; # Find the first phrase my $phrase = findPhrase($string, $dictionary); print "".(defined $phrase ? $phrase : "NO_SOLUTION")."\n"; sub findPhrase { my $string = shift; my $dictionary = shift; for(my $prefix_length = length($string); $prefix_length >= 1; $prefix_length--) { my $prefix = substr($string, 0, $prefix_length); my $rest = substr($string, $prefix_length); if(defined $dictionary->{$prefix}) { return $prefix if $rest eq ""; my $rec_phrase = findPhrase($rest, $dictionary); return $prefix." ".$rec_phrase if defined $rec_phrase; } } return undef; }DP and Recursive Solution with working code at http://www.gohired.in/2014/12/word-break-problem.html