Last Non-Zero Digit Of A Factorial

April 5, 2013

Today’s exercise appears from time to time on beginning-programmer message boards:

Write a program that, given n, returns the last non-zero digit of n! (factorial). For instance, 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5040, and its last non-zero digit is 4.

Your task is to write a program to find the last non-zero digit of a factorial. When you are finished, you are welcome to read or run a suggested solution, or to post your own solution or discuss the exercise in the comments below.

Advertisement

Pages: 1 2

15 Responses to “Last Non-Zero Digit Of A Factorial”

  1. izidor said

    I came up with a linear solution where the trailing zeros are trimmed and stored only the last non-zero digit. On my computer nonZeroDigit 1000000 finishes in about 9 seconds.


    nonZeroDigit :: Integral a => a -> a
    nonZeroDigit x = foldr1 (\n acc -> trim (n * acc)) [1..x]
    where
    trim x = if x `mod` 10 > 0 then x `mod` 10 else trim (x `div` 10)

  2. Egil said

    lnzd = head ∘ dropWhile (≡’0′) ∘ reverse ∘ show ∘ fac
    where fac n = foldr1 (*) [1‥n]

  3. swuecho said

    in perl6


    sub lnzd1($n) {
    ([*] 1..$n).Str.subst(/0/,'', :g).substr(*-1)
    }

    sub lnzd_number(Int $n ) {
    my $m = $n;
    while $m %% 10 {
    $m = $m div 10
    }
    $m;
    }

    sub lnzd2(Int $n) {
    sub helper( Int $x , Int $acc) {
    if $x == $n { lnzd_number($acc * $x) }
    else { helper($x+1,lnzd_number($acc * $x) ); }
    }
    helper(1,1) % 10;
    }

  4. Globules said

    Here’s a relatively fast Haskell version based on a little number theory trickery at
    http://comeoncodeon.wordpress.com/2009/06/20/lastnon-zero-digit-of-factorial/.
    With an argument of 1000000 it runs in about 0.006 seconds on a 1.7 GHz Intel Core i5.

    import Control.Monad (liftM)
    import Data.List (genericIndex)
    import System.Environment (getArgs)
    
    -- Return the least significant non-zero digit of n factorial.
    lnzf :: Integer -> Int
    lnzf n | n < 5 = [1, 1, 2, 6, 4] `genericIndex` n
           | otherwise = let (q, r) = n `quotRem` 5
                         in (p q * lnzf q * lnzf r) `rem` 10
      where p 0 = 1
            p m = [6, 2, 4, 8] `genericIndex` (m `rem` 4)
    
    main :: IO ()
    main = do
      ns <- liftM (map read) getArgs
      mapM_ (\n -> putStrLn $ show n ++ "! -> " ++ show (lnzf n)) ns
    
  5. jeltz said

    # Ruby

    def last_digit(n)
    n % 10
    end

    def last_non_zero_digit(n)
    while last_digit(n) == 0
    n = n / 10
    end
    last_digit n
    end

    max = ARGV[0].to_i
    puts (1..max).inject(1) { |result, n| result = last_non_zero_digit(result * n) }

  6. But, wait, solution 2 will work with a couple changes, no?

    (define (lnz2 n) ; doesn’t work
    (let loop ((i 2) (f 1))
    (cond ((zero? (modulo f 10)) (loop i (/ f 10)))
    ((< n i) (modulo f 10))
    (else (loop (+ i 1) (* f i))))))

    (display (lnz2 15)) (newline)

  7. John said

    My solution in Java:

  8. John said

    My solution in Java (link): http://pastebin.com/awgkzbb8

  9. Akshar said

    This is my solution done in Haskell.

    –the factorial function to be used
    factorial :: Int -> Int
    factorial n=product [1..n]

    –Done in two steps.
    –Step 1.Find the last non-zero digit of a number.
    lastNonZeroDigit :: Int -> Int
    lastNonZeroDigit n = if n `mod` 10 /= 0
    then n `mod` 10
    else lastNonZeroDigit (n `quot` 10)

    –Step 2.Now putting the output of factorial into the lastNonZeroDigit function input
    lastNZDfactorial :: Int -> Int
    lastNZDfactorial n = lastNonZeroDigit ( factorial (n))

    ——————————————————————————————————
    This could probably have been done without two functions for the last digit but
    in Haskell this way is prefered(That is what I heard).
    Again the lines with the “::” can be omitted.

    I am new to programming in Haskell so I would appreciate someone can tell me how to
    improve this or my Haskell skills overall.

  10. generic solution in python:

    # Program to print
    # the last non zero digit
    # in a factorial
    
    def Fact(n):
        
        if n < 1: return 1    
        else: return n * Fact(n-1)
    	
    def Convert_Num_Str():
    
    	lst_append = []
    
    	n = input("Enter the number whose factorial has to be calculated:>")
    	
    	result = Fact(int(n))	
    	
    	str_num = list(str(result))
    	print(str_num)
    	for i in range(len(str_num)):
    		if str_num[int(i)]!= '0':		
    			lst_append.append(str_num[i])		
    			
    	return int(lst_append[-1])
    			
        
    print(Convert_Num_Str())
    
  11. This is using simple division and loop and exit control logic

    # Program to print
    # the last non zero digit
    # in a factorial
     
    def Fact(n):
         
        if n < 1: return 1    
        else: return n * Fact(n-1)
         
    def Convert_Num_Str():
     
    	n = input("Enter the number whose factorial has to be calculated:>")  
    	
    	result = Fact(int(n))
    
    	while result!=0:
    	
    		print("Result before division", result)	
    		remainder = result%10
    		print(remainder)
    		if remainder!=0:			
    			break
    		else:
    			result = result/10
    			print("Result in Else",result)
    			remainder = result%10
    			print("Remainder in Else",remainder)
    		
    		
    	return remainder            
         
    print(Convert_Num_Str())
    
    
  12. HARSH DEPAL said

    in C++
    #include
    #include
    #include
    using namespace std;
    int main()
    {
    int n;
    cout<<"ENTER A NUMBER"<>n;
    int p=0;
    int fact=1;
    int LastDigit=0;
    while (p<n)
    {
    p++;
    fact=fact*p;
    LastDigit=fact%10;
    if (LastDigit==0)
    fact=fact/10;
    }
    cout<<""<<LastDigit<<" Is The Last Digit Of The Factorial"<<endl;
    getch();
    return 0;
    }

  13. itsme86 said

    C#:

    static void PrintLastNonZeroDigitInFactorial(int factorial)
    {
        Console.WriteLine(IntSplitReverse(Enumerable.Range(1, factorial).Aggregate(1, (product, nextNumber) => product * nextNumber)).FirstOrDefault(d => d != 0));
    }
    
    static IEnumerable<int> IntSplitReverse(int num)
    {
        List<int> digits = new List<int>();
        while (num > 0)
        {
            digits.Add(num % 10);
            num /= 10;
        }
        return digits;
    }
    
  14. Nothing super-duper, but a Ruby solution:

    
    def last_non_zero_fact_dig(n)
      fact = (1..n).inject(1){|prod, i| prod * i}
      (0..Math::log10(fact)).each do |k|
        digit = (fact / 10**k) % 10
        return digit if digit != 0
      end
    end
    

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: