A different solution to the previous exercise exploits the form of highly composite numbers, which always consists of small primes to large exponents, so we can specify the highly composite number using only the exponents; for instance, 64221111 represents the number 26 · 34 · 52 · 72 · 111 · 131 · 171 · 191 = 293318625600. Since the exponents must be non-increasing, there are five possibilities for a larger highly composite numbers, represented using the power-notation as 74221111, 65221111, 64321111, 64222111, and 642211111. Thus, we find composite numbers by starting with the null power-list, which equates to the number 20 = 1, then add all possible successors to a priority queue, pop the successors in order, check each for a new record number of divisors, and push the successors of that number back on to the priority queue.

Your task is to generate the sequence of highly composite numbers using a priority queue. When you are finished, you are welcome to read or run a suggested solution, or to post your own solution or discuss the exercise in the comments below.

Advertisements

Pages: 1 2