February 17, 2012

We have an easy exercise for a Friday afternoon.

Consider the sequence of positive integers for which xn+1 = xn / 2 when x is even and 3·xn + 1 when xn is odd; this is known colloquially as “half or triple plus one.” For instance, starting from x0 = 13 the sequence is 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, whence it loops through 4, 2, 1, …. This is called a hailstone sequence because it tends to go up and down and up and down much like hailstones in a thundercloud. Lothar Collatz conjectured in 1937 that every starting number eventually reaches 1; the conjecture is widely believed to be true, but has never been proven or disproven.

Your task is to write a function that computes hailstone sequences; you may wish to have some fun with your function by searching the internet for interesting tidbits about hailstone sequences and the Collatz conjecture. When you are finished, you are welcome to read or run a suggested solution, or to post your own solution or discuss the exercise in the comments below.


Pages: 1 2